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Introduction

• A global (volume averaged) model is applied to study a low pressure
(1 - 100 mTorr) high density H2/Ar discharge in the steady state.

• Based on a previous model of the Cl2/Ar discharge (Thorsteinsson and
Gudmundsson, 2010)

The global (volume averaged) model

• In addition to electrons the discharge consists of ground state atoms
(H, Ar), molecules (H2), positive ions (H+, H+

2 , H+
3 , Ar+, ArH+) neg-

ative ions (H−), vibrationally excited molecules (H2(v = 1 − 14)),
electronically excited atoms (Ar(4p)), metastables (Arm (1s5 and 1s3))
and radiatively coupled states (Arr (1s4 and 1s2)).

• Electrons are assumed to have a Maxwellian energy distribution in the
range 1 – 10 V.

• The collisional energy loss per electron-ion pair created is defined as

Ec = Eiz +
∑

i

Eex,i
kex,i

kiz
+

kel

kiz

3me

mi
Te (1)

where Eiz is the ionization energy, Eex,i is the threshold energy and
kex,i is the rate coefficient for the i-th excitation process and kiz is the
ionization rate coefficient for single step ionization.
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Figure 1: The calculated collisional energy loss Ec per electron-ion
pair created as a function of the electron temperature Te for atomic
and molecular hydrogen and the argon atom.

Results and discussion

1 10 100
10

15

10
16

10
17

10
18

10
19

10
20

10
21

p [mTorr]

n
[m

–
3
]

 

 

H

H2

v = 1

v = 2

v = 3
v = 4

v = 5v = 6

Ar

(a)

1 10 100
10

14

10
15

10
16

10
17

10
18

p [mTorr]

n
[m

–
3
]

 

 

e

H+

H+

2

H+

3

H−Ar+ArH+

(b)

Figure 2: The (a) neutral particle densities and (b) the charged
particle densitiesversus pressure at R = 15.24 cm, L = 7.62 cm,
Q = 50 sccm, Pabs = 600 W, Tg = 500 K and 50% Ar dilution.

• The surface recombination coefficient for atomic hydrogen is assumed
to be 0.023 (Curley et al., 2010) and the gas temperature is assumed
to be Tg = 500 K.

• The atomic and molecular hydrogen densities are similar at 1 mTorr,
but at 100 mTorr the atomic density is an order of magnitude lower.

• The [H2(v > 0)]/[H2(v = 0)] ratio increases from 0.026 to 0.1 when
the pressure is increased from 1 to 100 mTorr.

• The density of H− is relatively small over most of the pressure range
of interest but increases with increasing discharge pressure.

• Ar+ is the dominant positive ion in the discharge for pressures below
14 mTorr, for higher pressure H+

3 becomes the dominant positive ion.

• For very low pressures (p < 2 mTorr) there is a significantly higher
density of H+

2 and H+ ions than the H+
3 ion. The density of H+

3 ions
increases with increased pressure.

The density of ArH+ increases with pressure at first, peaking at roughly
8 mTorr but then it decreases again with increasing pressure.
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Figure 3: The dissociation fraction (solid lines) and electronega-
tivity (dashed lines) versus pressure at R = 15.24 cm, L = 7.62 cm,
Q = 50 sccm, Tg = 500 K and Pabs = 600 W..

• The dissociation fraction increases as the argon content increases.

• The electronegativity is low and decreases with increased argon content
but increases with increased discharge pressure. It is at a maximum of
1.06 in a pure hydrogen discharge at 100 mTorr.

• It is well known that the dissociative attachment of hydrogen molecules
is important in creating negative ions, in particular from the higher vi-
brational levels of the H2 molecule.

2

4

6

8

10

12

14

16

Σ
R

i
[1

02
0

m
–
3
s–

1
]

1 10 100
0

0.2

0.4

0.6

0.8

1

R
i
/Σ

R
i

p [mTorr]

 

 

ΣRi −→

DA of v = 0

DA of v = 8

DA of v = 9–14

DA of v = 1–7

(a)

2

4

6

8

10

12

14

16

Σ
R

i
[1

02
0

m
–
3
s–

1
]

1 10 100
0

0.2

0.4

0.6

0.8

1

R
i
/Σ

R
i

p [mTorr]

 

 

ΣRi −→

Neutraliz. by H+

2 , (R43)
Neutraliz. by H+

3 , (R44)

Electron detachment, (R45)

Recombination with ArH+, (R30)
(b)

Figure 4: The absolute and relative reaction rates for (a) creation
and (b) loss of H− versus pressure at R = 15.24 cm, L = 7.62 cm,
Q = 50 sccm, Tg = 500 K, Pabs = 600 W and 50% argon dilution.

• The cross section for dissociative attachment increases significantly
when the molecule is vibrationally excited and the threshold decreases.

• Dissociative attachment of the v=8 vibrationally excited molecule is
generally the most dominant individual contributor to the creation of
H− with 22% contribution at 1 mTorr.

• Dissociative attachment of H2(v = 7) and H2(v = 9) are also effective,
contributing around 18% and 14%, respectively.

• The ion-ion recombination reaction

H− + ArH+ −→ H2 + Ar (R30)

dominates the loss of H− in the pressure range 1–36 mTorr, reaching
80% contribution at roughly 7 mTorr.
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ΣRi −→

Proton transfer from H+
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ΣRi −→
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Figure 5: The absolute and relative reaction rates for (a) creation
and (b) loss of ArH+ versus pressure at R = 15.24 cm, L = 7.62 cm,
Q = 50 sccm, Tg = 500 K, Pabs = 600 W and 50% argon dilution.

• The atom transfer reaction

H2 + Ar+ −→ H + ArH+ (R28)

is most effective in the creation of ArH+ at all pressures, having almost
80% contribution at best at 1 mTorr.

• Dissociation on the walls and the proton transfer reaction

H2 + ArH+ −→ H+
3 + Ar (R32)

are the main contributors to the loss of ArH+.

Conclusions

• The effects of dissociative attachment on the creation of the negative
ion H− resulting from vibrationally excited states were explored, show-
ing that dissociative attachment from the v = {7–9} states contributes
the most to the creation of H− or about 50%.

• The contribution of the electron impact singlet excitation followed by
a radiative decay to a vibrationally excited state is the most significant
in the creation of the H− ion and the role of the direct electron impact
vibrational excitation is negligible in comparison.

• The density of the ArH+ is large, in particular in the pressure range
2–30 mTorr, and it plays a crucial role in the destruction of the H−

ion in this pressure range.
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