

Low pressure hydrogen discharges diluted with argon

A. Th. Hjartarson^a, E. G. Thorsteinsson^a and J. T. Gudmundsson^{a,b,*},

^a Science Institute, University of Iceland, Reykjavik, Iceland
 ^bDepartment of Electrical and Computer Engineering,
 University of Iceland, Reykjavik, Iceland
 *tumi@hi.is

Introduction

- A global (volume averaged) model is applied to study a low pressure (1 100 mTorr) high density H₂/Ar discharge in the steady state.
- Based on a previous model of the Cl₂/Ar discharge (Thorsteinsson and Gudmundsson, 2010)

The global (volume averaged) model

- In addition to electrons the discharge consists of ground state atoms (H, Ar), molecules (H_2) , positive ions $(H^+, H_2^+, H_3^+, Ar^+, ArH^+)$ negative ions (H^-) , vibrationally excited molecules $(H_2(v = 1 14))$, electronically excited atoms (Ar(4p)), metastables $(Ar^m (1s_5 \text{ and } 1s_3))$ and radiatively coupled states $(Ar^r (1s_4 \text{ and } 1s_2))$.
- \bullet Electrons are assumed to have a Maxwellian energy distribution in the range $1-10~\mathrm{V}$.
- The collisional energy loss per electron-ion pair created is defined as

$$\mathcal{E}_{c} = \mathcal{E}_{iz} + \sum_{i} \mathcal{E}_{ex,i} \frac{k_{ex,i}}{k_{iz}} + \frac{k_{el} 3m_{e}}{k_{iz}} T_{e}$$

$$\tag{1}$$

where \mathcal{E}_{iz} is the ionization energy, $\mathcal{E}_{ex,i}$ is the threshold energy and $k_{ex,i}$ is the rate coefficient for the *i*-th excitation process and k_{iz} is the ionization rate coefficient for single step ionization.

Figure 1: The calculated collisional energy loss \mathcal{E}_c per electron-ion pair created as a function of the electron temperature T_e for atomic and molecular hydrogen and the argon atom.

Results and discussion

Figure 2: The (a) neutral particle densities and (b) the charged particle densities versus pressure at R=15.24 cm, L=7.62 cm, Q=50 sccm, $P_{\rm abs}=600$ W, $T_{\rm g}=500$ K and 50% Ar dilution.

- The surface recombination coefficient for atomic hydrogen is assumed to be 0.023 (Curley et al., 2010) and the gas temperature is assumed to be $T_{\rm g}=500$ K.
- The atomic and molecular hydrogen densities are similar at 1 mTorr, but at 100 mTorr the atomic density is an order of magnitude lower.
- The $[H_2(v > 0)]/[H_2(v = 0)]$ ratio increases from 0.026 to 0.1 when
- The density of H⁻ is relatively small over most of the pressure range of interest but increases with increasing discharge pressure.

the pressure is increased from 1 to 100 mTorr.

- Ar⁺ is the dominant positive ion in the discharge for pressures below 14 mTorr, for higher pressure H₃⁺ becomes the dominant positive ion.
- For very low pressures (p < 2 mTorr) there is a significantly higher density of H_2^+ and H^+ ions than the H_3^+ ion. The density of H_3^+ ions increases with increased pressure.

The density of ArH⁺ increases with pressure at first, peaking at roughly 8 mTorr but then it decreases again with increasing pressure.

Figure 3: The dissociation fraction (solid lines) and electronegativity (dashed lines) versus pressure at R=15.24 cm, L=7.62 cm, Q=50 sccm, $T_{\rm g}=500$ K and $P_{\rm abs}=600$ W..

- The dissociation fraction increases as the argon content increases.
- The electronegativity is low and decreases with increased argon content but increases with increased discharge pressure. It is at a maximum of 1.06 in a pure hydrogen discharge at 100 mTorr.
- It is well known that the dissociative attachment of hydrogen molecules is important in creating negative ions, in particular from the higher vibrational levels of the H₂ molecule.

Figure 4: The absolute and relative reaction rates for (a) creation and (b) loss of H⁻ versus pressure at R=15.24 cm, L=7.62 cm, Q=50 sccm, $T_{\rm g}=500$ K, $P_{\rm abs}=600$ W and 50% argon dilution.

- The cross section for dissociative attachment increases significantly when the molecule is vibrationally excited and the threshold decreases.
- Dissociative attachment of the v=8 vibrationally excited molecule is generally the most dominant individual contributor to the creation of H⁻ with 22% contribution at 1 mTorr.

- Dissociative attachment of $H_2(v=7)$ and $H_2(v=9)$ are also effective, contributing around 18% and 14%, respectively.
- The ion-ion recombination reaction

$$H^- + ArH^+ \longrightarrow H_2 + Ar$$
 (R30)

dominates the loss of ${\rm H^-}$ in the pressure range 1–36 mTorr, reaching 80% contribution at roughly 7 mTorr.

Figure 5: The absolute and relative reaction rates for (a) creation and (b) loss of ArH⁺ versus pressure at R = 15.24 cm, L = 7.62 cm, Q = 50 sccm, $T_{\rm g} = 500$ K, $P_{\rm abs} = 600$ W and 50% argon dilution.

• The atom transfer reaction

$$H_2 + Ar^+ \longrightarrow H + ArH^+$$
 (R28)

is most effective in the creation of ${\rm ArH^+}$ at all pressures, having almost 80% contribution at best at 1 mTorr.

• Dissociation on the walls and the proton transfer reaction

$$H_2 + ArH^+ \longrightarrow H_3^+ + Ar$$
 (R32)

are the main contributors to the loss of ArH⁺.

Conclusions

- The effects of dissociative attachment on the creation of the negative ion H⁻ resulting from vibrationally excited states were explored, showing that dissociative attachment from the $v = \{7-9\}$ states contributes the most to the creation of H⁻ or about 50%.
- The contribution of the electron impact singlet excitation followed by a radiative decay to a vibrationally excited state is the most significant in the creation of the H⁻ ion and the role of the direct electron impact vibrational excitation is negligible in comparison.
- The density of the ArH⁺ is large, in particular in the pressure range 2–30 mTorr, and it plays a crucial role in the destruction of the H⁻ ion in this pressure range.

Acknowledgments

This work was partially supported by the Icelandic Research Fund.

References

Curley, G. A., L. Gatilova, S. Guilet, S. Bouchoule, G. S. Gogna, N. Sirse, S. Karkari, and J. P. Booth (2010). Surface loss rates of H and Cl radicals in an inductively coupled plasma etcher derived from time-resolved electron density and optical emission measurements. *Journal of Vacuum Science and Technology A* 28(2), 360–373.

Thorsteinsson, E. G. and J. T. Gudmundsson (2010). A global (volume averaged) model of a Cl₂/Ar discharge. I. Continous power. *Journal of Physics D: Applied Physics* 43(11), 115201.