AVS-51st-2004:

$\begin{array}{c} \textbf{Ultra-thin Lattice}\\ \textbf{Matched}\\ \textbf{Cr}_x \textbf{Mo}_{1-x} / \textbf{MgO}\\ \textbf{Multilayers} \end{array}$

K. B. Gylfason^{1,3}, J. S. Ágústsson^{1,2},
S. Ólafsson¹, I. Meyvantsson^{2,3}
K. Johnsen³ and J. T. Guðmundsson^{1,2,4}

¹Science Institute, University of Iceland ²Department of Electrical Engineering, University of Iceland ³Lyfjathroun Biopharmaceuticals, Reykjavík, Iceland ⁴tumi@hi.is

November 16., 2004

1

Introduction

- Lattice matched heteroepitaxial films were prepared in a magnetron sputtering discharge
- $\operatorname{Cr}_x \operatorname{Mo}_{1-x}$ thin films were grown on MgO (100) using a DC discharge [Meyvantsson et al., 2004]
- An MgO over-layer was grown on top by reactive sputtering in a pulsed bipolar discharge
- The resistivity of the $\operatorname{Cr}_x \operatorname{Mo}_{1-x}$ films was measured in situ using a four-point probe
- Ex situ Rutherford backscattering (RBS), X-ray diffraction (XRD) and low angle reflectometry (XRR) measurements were used to determine the film composition, structure, thickness, surface and interface roughness
- Reflection high energy electron diffraction (RHEED) confirmed epitaxial growth

2

Resistivity versus thickness

- The $\operatorname{Cr}_x \operatorname{Mo}_{1-x}$ alloy composition is chosen such that the inter-atomic distance along the <011> direction approximates the lattice constant of MgO
- A 99% lattice match can be achieved for $0.56 \le x \le 0.8$ [Chambers, 2000]
- In situ growth curves for Cr_{0.63}Mo_{0.37} show a coalescence thickness of less than two monolayers indicating layer by layer growth

Stoichiometry

- Rutherford Back Scattering (RBS) measurements of MgO grown on Si confirm that the film grows in the correct stoichiometry (1:1)
- Similarly RBS was used to confirm the $Cr_{0.63}Mo_{0.37}$ stoichiometry

3

4

RHEED

- The figures show RHEED scans of an MgO substrate and an MgO film grown on top of a CrMo film
- The film has the same orientation and lattice parameters as the substrate and is epitaxially grown

Metal-insulator-metal (MIM)

- A full metal-insulator-metal (MIM) structure MIM was created by growing another CrMo film
- A Scanning Electron Microscope (SEM) image of a MIM structure with film thicknesses 200Å CrMo, 40Å MgO and 200Å CrMo

X-ray Reflectometry (XRR)

- Estimates for film thicknesses and interface roughness was obtained from XRR measurements
- The figure shows a MIM structure with film thicknesses 50Å CrMo, 80Å MgO and 420Å CrMo
- The interface roughness of the films are between 3-5Å and surface roughness is 15Å

Summary

- Heteroepitaxial growth of a MIM structure was confirmed
- RHEED, XRR, XRD, RBS and resistance measurements were used to characterize the growth mechanisms

Acknowledgments

This work was partially supported by the University of Iceland Research Fund and the Icelandic Research Council.

References

[Chambers, 2000] Chambers, S. A. (2000). Epitaxial growth and properties of thin oxide films. Surface Science Reports, 39:105-180.

[Meyvantsson et al., 2004] Meyvantsson, I., Olafsson, S., Johnsen, K., and Gudmundsson, J. T. (2004). Preparation and characterization of magnetron sputtered, ultra-thin Cr_{0.63} Mo_{0.37} films on MgO. Journal of Vacuum Science and Technology A, 22:1636-1639.