Electron power absorption in electronegative capacitively coupled discharges of complex chemistry

Jón Tómas Guðmundsson^{1,2}

¹Space and Plasma Physics, KTH Royal Institute of Technology, Stockholm, Sweden ² Science Institute, University of Iceland, Reykjavik, Iceland tumi@hi.is

International Online Plasma Seminar (IOPS) December 9., 2021

Sac

Lieberman and Lichtenberg (2005), Principles of Plasma Discharges and Materials Processing, Wiley

- The capacitive discharge is sustained by applying radio-frequency (rf) voltage or current between electrodes when a neutral gas at low pressure is injected
- The discharge is sustained by radio-frequency (rf) currents and voltages, introduced through capacitive sheaths

- The two main electron power absorption mechanisms in these discharges are
 - momentum transfer due to the moving sheaths which leads to stochastic (pressure or collisionless) heating
 - currents in the main body of the plasma discharge lead to Ohmic (or collisional) heating in the bulk and sheath regions
- We explore this using 1D particle-in-cell/Monte Carlo collision simulation for three different chemistries
 - weakly electronegative oxygen discharge
 - highly electronegative chlorine discharge
 - electropositive argon discharge

- The electron power absorption
 - *p* = 1.33 Pa
 - f = 13.56 MHz
 - *V*₀ = 222 V
 - gap = 45 mm

•
$$\gamma_{\text{see}} = 0.0$$

- For argon the discharge is in α -mode
- Chlorine and oxygen discharges operate in hybrid α- and drift ambipolar (DA)-mode

The electron power absorption

- *p* = 1.33 Pa
- f = 27.12 MHz

■ gap = 45 mm

•
$$\gamma_{\text{see}} = 0.0$$

- The argon and oxygen discharges are operated in α-mode
- The chlorine discharge operated in hybrid *α*- and drift ambipolar (DA)-mode

- The 1D particle-in-cell/Monte Carlo collision simulation
- The low pressure oxygen discharge
- The low pressure chlorine discharge
- The intermediate pressure argon discharge
- Summary

The 1D particle-in-cell/Monte Carlo collision simulation

The oopd1 1d-3v PIC/MCC code

- We use the oopd1 (objective oriented plasma device for one dimension) code to simulate the discharges
- The oopd1 code was originally developed by the Plasma Theory and Simulation Group at UC Berkeley later Michigan State University
- It has 1 dimension in space and 3 velocity components for particles (1d-3v)
- The oopd1 code is supposed to replace the widely used xpdx1 series (xpdp1, xpdc1 and xpds1)
- It is developed to simulate various types of plasmas, including processing discharges, accelerators and beams

イロト イ理ト イヨト イヨト

nac

- Modular structure
- Includes relativistic kinematics
- Particles can have different weights

Gudmundsson et al. (2013) Plasma Sources Sci. Technol., 22(3) 035011

Wen et al. (2021) Plasma Sources Sci. Technol., 30(10) 105009

The low pressure oxygen discharge

- Oxygen forms a weakly electronegative discharge
- The oxygen discharge is of vital importance in various materials processing applications such as
 - ashing of photoresist
 - etching of polymer films
 - oxidation and deposition of thin film oxides
- The presence of negative ions has a strong influence on the kinetics and dynamics of the oxygen discharge
- The oxygen chemistry is rather involved, in particular due to the presence of metastable molecular and atomic oxygen and their role in dissociative attachment and detachment processes

A B > A B > A B
 A

The oxygen discharge

We consider a discharge that consists of:

- electrons
- the ground state oxygen molecule O₂(X³Σ⁻_g)
- the metastable oxygen molecule $O_2(a^1 \Delta_g)$
- the metastable oxygen molecule $O_2(b^1\Sigma_g)$
- the ground state oxygen atom O(³P)
- the metastable oxygen atom O(¹D)
- the negative oxygen ion O⁻
- the positive oxygen ions O⁺ and O⁺₂
- The discharge model includes energy dependent secondary electron emission yield

Hannesdottir and Gudmundsson, Plasma Sources Sci. Technol., 25 055002 (2016)

We apply a global model beforehand to calculate the partial pressure of the various neutrals

Thorsteinsson and Gudmundsson, Plasma Sources Sci. Technol., 19 055008 (2010

・ロト ・ 伊ト ・ ヨト ・ ヨト

- A parallel plate capacitively coupled oxygen discharge at driving frequency of 13.56 MHz for gap separation of 45 mm
- The spatio-temporal electron heating J_e · E at 1.33 and 6.67 Pa
- At 1.33 Pa there is a significant electron heating within the electronegative core
- At 6.67 Pa the electron heating occurs almost solely in the sheath region

Hannesdottir and Gudmundsson (2016) PSST, 25 055002

Gudmundsson and Ventéjou (2015) JAP 118 153302

- The time averaged electron heating ⟨J_e · E⟩ at 1.33 and 6.67 Pa
- At 1.33 Pa there is significant electron heating within the electronegative core
- At 6.67 Pa, the heating rate in the electronegative core is roughly zero, and electron heating is almost entirely located in the sheath regions

Gudmundsson and Snorrason (2017) JAP 122 193302

- The axial electric field at *t*/*τ*_{rf} = 0.5 for both 1.33 and 6.67 Pa
- At 1.33 Pa is a significant electric field strength within the electronegative core while at 6.67 Pa it is zero
- This strong electric field within the plasma bulk (the electronegative core) indicates a drift-ambipolar (DA) heating mode
- The electronegativity is significantly higher when operating at 1.33 Pa α > 20 than when operating at 6.67 Pa α < 0.1

- At low pressure (< 4 Pa) the EEPF is Druyvesteyn like and becomes bi-Maxwellian as the pressure is increased
- These results contradict what is commonly found for the capacitively coupled argon discharge where the EEPF evolves from being bi-Maxwellian at low pressure to being Druyvesteyn like at high pressure

Gudmundsson and Ventéjou (2015) JAP 118 153302

Oxygen CCP – frequency dependence

Gudmundsson et al. (2018), PSST 27(2) 025009

- Oxygen discharge at 1.33 Pa
- At 12 MHz significant heating is observed in the plasma bulk but also in the sheath region
- At 19 MHz the heating and cooling in the sheath regions has increased, however there is contribution to the electron heating in the bulk region (note the change in scale)
- At 20 MHz there is almost no electron heating in the plasma bulk

Sac

Oxygen CCP – electrode spacing

- A parallel plate capacitively coupled oxygen discharge at 6.67 Pa driven by a 400 V voltage source at 13.56 MHz as the gap separation is varied
- At small electrode spacing a combination of stochastic (α-mode) and drift ambipolar (DA) heating in the bulk plasma (the electronegative core) is observed
- As the electrode spacing is increased, the heating mode transitions into a pure α-mode

Gudmundsson and Proto (2019) PSST 28 045012

Oxygen CCP – electrode spacing

- The time averaged electron power absorption $\langle \textbf{J}_e \cdot \textbf{E} \rangle$
- The electron density in the discharge center (left y axis) and the electronegativity in the discharge center (right y axis) as a function of the gap separation
- The heating mode transition coincides with a sharp decrease in electronegativity
- This agrees with recent experimental findings of You et al. (2019)

- The effective electron temperature drops as the pressure is increased
- 1.33 Pa, 6.67 Pa and 26.67 Pa
- When the metastable singlet oxygen molecule O₂(a¹∆_g) is added to the discharge model the effective electron temperature drops
- This is due to detachment by the metastable O₂(a¹∆_g) molecule

 $O^- + O_2(a^1 \Delta_g) \rightarrow \text{ products}$

Gudmundsson and Lieberman (2015) PSST 24 035016 Gudmundsson and Hannesdottir, AIP Conf. Proc. (2017) 1811 120001

- At 1.33 Pa excluding the metastable states in the simulation has very small influence on the heating mechanism
- At 6.67 Pa the metastable states have a significant influence on the heating mechanism
- The role of the metastables is even more significant at 26.67
 Pa

Gudmundsson and Ventéjou (2015) JAP **118** 153302 Gudmundsson and Lieberman (2015) PSST **24** 035016 Gudmundsson and Hannesdottir, AIP

I = 1 = 1

Conf. Proc. (2017) 1811 120001

Sac

Electron power absorption – Bolzmann term analysis

 To determine the electron power absorption mechanisms we apply Boltzman term analysis

Surendra and Dalvie (1993) PRE 48(5) 3914 and Schulze et al. (2018) 27(5) 055010

- The electric field within the electronegative core constitutes contributions through various different phenomena
- The electric field is composed of six terms

Electron power absorption – Bolzmann term analysis

The electron absorbed power can be determined as follows

$$J_{e} \cdot E = \underbrace{m_{e}u_{e}n_{e}\frac{\partial u_{e}}{\partial t}}_{I} - \underbrace{m_{e}u_{e}^{3}\frac{\partial n_{e}}{\partial x}}_{II} - \underbrace{m_{e}u_{e}^{2}\frac{\partial n_{e}}{\partial t}}_{III} + \underbrace{eu_{e}T_{e}\frac{\partial n_{e}}{\partial x}}_{IV} + \underbrace{en_{e}u_{e}\frac{\partial T_{e}}{\partial x}}_{V} + \underbrace{m_{e}n_{e}\nu_{c}u_{e}^{2}}_{VI}$$
(1)

- Terms I and III power absorption due to electron inertia
- Term II the electron density gradient
- Term IV ambipolar field electron density gradient
- Term V the electron temperature gradient
 - Terms IV and V are pressure or collisionless heating
- Term VI electron neutral collisions or Ohmic heating

イロト イ理ト イヨト イヨト

Oxygen CCP - Bolzmann term analysis

- The pressure terms are important significant part of the electron power absorption at both 1.33 Pa and 13.3 Pa is due to the pressure terms
- The Terms IV (ambipolar) and V (electron temperature gradient) flip signs and are sharply smaller in the absolute value at 1.33 Pa
- The Ohmic term's magnitude (Term VI) is similar at both pressures
- Note that Ohmic power absorption is important even at low pressure

Proto and Gudmundsson (2020) JAP 128 113302

The low pressure chlorine discharge

The chlorine discharge

- Chlorine is an electronegative diatomic gas that is widely used in plasma etching of both semiconductors and metals, in particular poly-silicon gate and aluminum interconnects
- Chlorine atoms are believed to be the primary reactant in plasma etching
- The chlorine molecule has
 - a low dissociation energy (2.5 eV)
 - a near-zero threshold energy for dissociative attachment
- All electronic excitations of the molecule appear to be dissociative, and no metastable molecular states are of importance

A B > A B > A B
 A

The chlorine discharge

- We consider a discharge that consists of:
 - electrons
 - the ground state chlorine molecule $Cl_2(X^{1}\Sigma_g^+, v = 0)$,
 - the ground state chlorine atom Cl(3p^{5 2}P)
 - the negative chlorine ion Cl⁻
 - the positive chlorine ions Cl⁺ and Cl⁺₂

We apply a global model beforehand to calculate the fraction of Cl atoms

Thorsteinsson and Gudmundsson (2010) Plasma Sources Sci. Technol., 19(1) 01500

Sac

The chlorine discharge

The reaction set for the chlorine is comprehensive and includes 44 reactions

Huang and Gudmundsson (2013) Plasma Sources Sci. Technol., 22(5) 055020

Voltage source operated at a single frequency

$$V(t) = V_{\rm rf} \sin(2\pi f t)$$

gap = 2.54 cm, $V_{\rm rf}$ = 222 V and f = 13.56 MHz

Proto and Gudmundsson (2021) PSST 30(6) 065009

- The time averaged charged particle density profiles of a parallel plate capacitively coupled chlorine discharge
- At low pressures, the profile for Cl⁺₂ ions is cosine-like or parabolic since Cl⁺₂ ions are lost mainly due to diffusion to the walls
- As the pressure increases, the recombination between Cl⁺₂ and Cl⁻ ions becomes the major loss mechanism for Cl⁺₂ ions and the density profile for Cl⁺₂ and Cl⁻-ions becomes flat in the bulk region

- The electronegativity in the discharge center is very high and increases with increased operating pressure
- Negative ion creation proceeds via electron impact dissociative attachment whose cross-sections are high
- Drift-ambipolar (DA) power absorption is expected within the electronegative core

Schulze et al. (2011) PRL 107(27) 275001

Skarphedinsson and Gudmundsson (2020) PSST 29(8) 084004

- The spatio temporal behavior of the various terms that constitute the electron power absorption
 - Terms I and III electron inertia
 - Term I electron density gradient
 - Terms IV and V pressure (collisionless) heating
 - Term VI Ohmic heating

Proto and Gudmundsson (2021) PSST 30(6) 06500

- The time averaged electron power absorption profile of
 - term IV (red line)
 - term V (blue dashed line)
 - term VI (green dot dashed line)
- At 1 Pa the pressure terms and the Ohmic term contribute to the electron power absorption
- At higher pressures Ohmic power absorption dominates
- At 35 Pa striations are observed

Proto and Gudmundsson (2021) PSST 30(6) 065009

- Striations are known to appear in electronegative discharges when two conditions are simultaneously fulfilled:
 - high enough electronegativity
 - driving frequency comparable to the ion plasma frequency
- If fulfilled, positive and negatively charged ions oscillate and electric field is superimposed onto the drift field
- The appearance of the striations depends heavily on the ion-neutral collision frequency and therefore on the pressure

- The space averaged electron power absorption profile terms
 - $t/\tau_{\rm rf} = 0.25$ blue bar
 - $t/\tau_{\rm rf} = 0.5 \text{ red bar}$
 - time averaged green bar
- At 1 Pa the pressure terms and the Ohmic term contribute to the electron power absorption
- At higher pressures Ohmic power absorption dominates

Proto and Gudmundsson (2021) PSST 30(6) 065009

- The spatio temporal behavior of the total electron power absorption
 J_e · E over the full gap length for a capacitively coupled chlorine discharge
- At 1 Pa there is clear sign of drift ambipolar heating (DA-mode) and stochastic heating (α-mode)
- At 35 and 50 Pa there are indications of striations in addition to drift ambipolar heating (DA-mode) and stochastic heating (α-mode)

Proto and Gudmundsson (2021) PSST 30(6) 065009

- The electron energy probability function (EEPF) in the discharge center is Druyvesteyn like at all pressures
- This is expected when there is significant Ohmic heating in the plasma bulk

Tailored voltage waveforms

Dual frequency voltage source

$$V(t) = rac{V_0}{2}\sin(2\pi tt) + rac{V_0}{2}\sin(4\pi tt + heta)$$

gap = 2.54 cm, V_0 = 222 V and f = 13.56 MHz

Tailored voltage waveforms

- By applying voltage at two or more frequencies, a fundamental frequency and its harmonics the ion bombarding energy can be controlled
- By adjusting the phase angle θ between the fundamental and the second harmonic a dc self-bias voltage can be generated
- This gives separate control of the ion flux and ion energy in a capacitively coupled discharge
- Electrically asymmetric discharge is formed in otherwise a geometrically symmetric reactor

Huang and Gudmundsson (2014)

TPS 42(10) 2854

Sac

Tailored voltage waveforms

Skarphedinsson and Gudmundsson (2020) PSST 29(8) 084004

- The IED for Cl₂⁺ ions bombarding the electrodes while varying the phase angle, between the fundamental and the second harmonic
- The grounded (upper row) and the driven (lower row) electrode

- Capacitive argon discharge at 213
 Pa with 2.54 cm gap
- The reaction rates for ionization
 - neglecting excited states (upper) and (neglecting) and (including) secondary electrons
 - including excited state kinetics (lower), energy dependent secondary electron emission due to ion and atom bombardment of the electrodes, and electron reflection
- Most of the ionization occurs near the plasma-sheath interfaces, with little ionization within the bulk region

- The ionization processes versus pressure neglecting secondary electrons
 - Electron impact ionization
 - Step-wise ionization
 - Metastables pooling ionization
 - Metastables pooling ionization
- The region labeled I (p_g > 200 Pa) indicates where the contributions of metastable pooling and step-wise ionization exceed that of electron impact ground state ionization

Wen et al. (2021) Plasma Sources Sci. Technol., 30(10) 105009

< □ > < 同 > <

- When secondary electrons are included – transition from α-mode to γ-mode
 - electron impact by secondary 76 %
 - electron impact by primary 11 %
 - metastable Penning ionization 13 %
 - multi-step ionization, about 0.3 %
- Excited states are very effective in producing secondary electrons, with approximately 14.7 times the contribution of ion bombardment

Gudmundsson et al. (2021) Plasma Sources Sci. Technol., accepted

Summary

Summary

 Capcacitively coupled argon, oxygen and chlorine discharges were studied by particle-in-cell/Monte Carlo collision simulations

Summary

- In a chlorine discharge DA electron power absorption dominates and becomes increasingly more Ohmic with increased pressure
- Including the detachment processes by the singlet metastable states has a strong influence on the electronegativity in the oxygen discharge
- A heating mode transition, from hybrid drift-ambipolar (DA) and α-mode to pure α-mode, is observed as the pressure, driving frequency, or electrode gap spacing are increased, or the quenching coefficient of the oxygen metastable O₂(a¹Δ_g) is varied

Acknowledgements

Thank you for your attention

The slides can be downloaded at

http://langmuir.raunvis.hi.is/~tumi/ranns.html

Various parts of this work were made by a number of students

- Shuo Huang (UM-SJTU, later University of Michigan and now KLA-Tencor)
- Bruno Ventéjou (LPGP, Université Paris-Sud, Orsay, France)
- Hólmfríður Hannedóttir (University of Iceland now Harvard University)
- Davíð I. Snorrason (University of Iceland now Grein Research)
- Andrea Proto (University of Iceland)
- Garðar A. Skarphéðinsson (University of Iceland)
- Janez Krek (Michigan State)

in collaboration with

- prof. Michael A. Lieberman (UC Berkeley)
- prof. John P. Verboncoeur (Michigan State)
- Dr. Emi Kawamura (UC Berkeley)
- Dr. De-Qi Wen (Michigan State)

The work was funded by Icelandic Research Fund grants nos. 163086 and 217999 the University of Iceland Research Fund.

Sac

References

- Gudmundsson, J. T., E. Kawamura, and M. A. Lieberman (2013). A benchmark study of a capacitively coupled oxygen discharge of the oopd1 particle-in-cell Monte Carlo code. *Plasma Sources Science and Technology* 22(3), 035011.
- Gudmundsson, J. T., J. Krek, D.-Q. Wen, E. Kawamura, and M. A. Lieberman (2021). Surface effects in a capacitive argon discharge in the intermediate pressure regime. *Plasma Sources Science and Technology*, (accepted).
- Gudmundsson, J. T. and M. A. Lieberman (2015). On the role of metastables in capacitively coupled oxygen discharges. *Plasma Sources Science and Technology* 24(3), 035016.
- Gudmundsson, J. T. and A. Proto (2019). Electron heating mode transitions in a low pressure capacitively coupled oxygen discharge. *Plasma Sources Science and Technology* 28(4), 045012.
- Gudmundsson, J. T. and D. I. Snorrason (2017). On electron heating in a low pressure capacitively coupled oxygen discharge. *Journal of Applied Physics 122*(19), 193302.
- Gudmundsson, J. T., D. I. Snorrason, and H. Hannesdottir (2018). The frequency dependence of the discharge properties in a capacitively coupled oxygen discharge. *Plasma Sources Science and Technology 27*(2), 025009.
- Gudmundsson, J. T. and B. Ventéjou (2015). The pressure dependence of the discharge properties in a capacitively coupled oxygen discharge. *Journal of Applied Physics* 118(15), 153302.
- Hannesdottir, H. and J. T. Gudmundsson (2016). The role of the metastable $O_2(b^1 \Sigma_g^+)$ and energy-dependent secondary electron emission yields in capacitively coupled oxygen discharges. *Plasma Sources Science and Technology 25*(5), 055002.
- Huang, S. and J. T. Gudmundsson (2013). A particle-in-cell/Monte Carlo simulation of a capacitively coupled chlorine discharge. *Plasma Sources Science and Technology 22*(5), 055020.
- Huang, S. and J. T. Gudmundsson (2014). Ion energy and angular distributions in a dual-frequency capacitively coupled chlorine discharge. *IEEE Transactions on Plasma Science* 42(10), 2854–2855.
- Lieberman, M. A. and A. J. Lichtenberg (2005). Principles of Plasma Discharges and Materials Processing (2 ed.) New York: John Wiley & Sons.

・ロト ・ 同ト ・ ヨト ・ ヨト

References

- Liu, Y.-X., I. Korolov, E. Schüngel, Y.-N. Wang, Z. Donkó, and J. Schulze (2017). Striations in electronegative capacitively coupled radio-frequency plasmas: analysis of the pattern formation and the effect of the driving frequency. *Plasma Sources Science and Technology 26*(5), 055024.
- Proto, A. and J. T. Gudmundsson (2020). Electron power absorption dynamics in a low pressure radio frequency driven capacitively coupled discharge in oxygen. *Journal of Applied Physics* 128(11), 113302.
- Proto, A. and J. T. Gudmundsson (2021). Electron power absorption in radio frequency driven capacitively coupled chlorine discharge. *Plasma Sources Science and Technology* 30(6), 065009.
- Schulze, J., A. Derzsi, K. Dittmann, T. Hemke, J. Meichsner, and Z. Donkó (2011). Ionization by drift and ambipolar electric fields in electronegative capacitive radio frequency plasmas. *Physical Review Letters* 107, 275001.
- Schulze, J., Z. Donkó, T. Lafleur, S. Wilczek, and R. P. Brinkmann (2018). Spatio-temporal analysis of the electron power absorption in electropositive capacitive RF plasmas based on moments of the Boltzmann equation. *Plasma Sources Science and Technology 27*(5), 055010.
- Skarphedinsson, G. A. and J. T. Gudmundsson (2020). Tailored voltage waveforms applied to a capacitively coupled chlorine discharge. *Plasma Sources Science and Technology* 29(8), 084004.
- Surendra, M. and M. Dalvie (1993). Moment analysis of rf parallel-plate-discharge simulations using the particle-in-cell with Monte Carlo collisions technique. *Physical Review E* 48(5), 3914–3924.
- Thorsteinsson, E. G. and J. T. Gudmundsson (2010). A global (volume averaged) model of a chlorine discharge. *Plasma Sources Science and Technology 19*(1), 015001.
- Wen, D.-Q., J. Krek, J. T. Gudmundsson, E. Kawamura, M. A. Lieberman, and J. P. Verboncoeur (2021). Benchmarked and upgraded particle-in-cell simulations of capacitive argon dischargeat intermediate pressure: The role of metastable atoms. *Plasma Sources Science and Technology* 30(10), 105009.
- You, K.-H., J. Schulze, A. Derzsi, Z. Donkó, H. J. Yeom, J. H. Kim, D.-J. Seong, and H.-C. Lee (2019). Experimental and computational investigations of the effect of the electrode gap on capacitively coupled radio frequency oxygen discharges. *Physics of Plasmas 26*(1), 013503.

