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Introduction

•A global (volume averaged) model is applied to study a low pressure
(1 – 100 mTorr) high density Cl2/Ar discharge in the steady state.

• Based on previous models of O2/Ar (Gudmundsson and Thorsteinsson,
2007), nitrogen (Thorsteinsson and Gudmundsson, 2009b) and chlorine
(Thorsteinsson and Gudmundsson, 2009a) discharges.

The global (volume averaged) model

• In addition to electrons, the discharge consists of ground state chlorine
molecules Cl2(X

1Σ+
g , v = 0), vibrationally excited chlorine molecules

Cl2(X
1Σ+

g , v = 1 − 3), ground state chlorine atoms Cl(3p5 2P), neg-

ative chlorine ions Cl−, positive chlorine ions Cl+ and Cl+2 , ground

state argon Ar(3s23p6), metastable argon Arm (1s5 and 1s3), radia-
tively coupled levels Arr (1s4 and 1s2) and positive argon ions Ar+.

• Electrons are assumed to have a Maxwellian-like energy distribution in
the range 1 – 7 V.

•The gas temperature is dependent on both power and pressure as in a
pure chlorine discharge (Donnelly and Malyshev, 2000).

•The wall recombination coefficient γrec is dependent on the chlorine
dissociation fraction (Stafford et al., 2009).

•The collisional energy loss per electron-ion pair created is defined as

Ec = Eiz +
∑

i

Eex,i
kex,i

kiz
+

kel

kiz

3me

mi
Te (1)

where Eiz is the ionization energy, Eex,i is the threshold energy and
kex,i is the rate coefficient for the i-th excitation process and kiz is the
ionization rate coefficient.
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Figure 1: The collisional energy loss per e-Cl+2 , e-Cl+ and e-Ar+

electron-ion pairs created versus the electron temperature.

•At high energy the collisional energy loss is mainly determined by Eiz;
11.5 eV for Cl2, 13.0 eV for Cl and 15.8 eV for Ar.

Results and discussion

0 20 40 60 80 100
10

14

10
15

10
16

10
17

10
18

10
19

10
20

QAr/(QAr + QCl2) [%]

n
[m

–
3
]

 

 

Cl2(v=0)

Cl2(v=1)

Cl2(v=2)

Cl2(v=3)

Cl

Ar

Arm

Arr

Ar(4p)

(a)

0 20 40 60 80 100
10

15

10
16

10
17

10
18

QAr/(QAr + QCl2) [%]

n
[m

–
3
]

 

 

e

Cl+

Cl+2

Cl−
Ar+

(b)

Figure 2: The densities of (a) neutral and (b) charged chlorine and
argon particles versus the fractional flow of argon into the chamber.

• The pressure is p = 10 mTorr, the power Pabs = 500 W and the total
gas flow rate QCl2 + QAr = 100 sccm.

• The chamber is assumed to be made of stainless steel, cylindrical with
the dimensions R = 10 cm and L = 10 cm.

• The Cl+ density increases with decreasing chlorine content until the
source gas flow is 68 % Ar while other densities decrease.

• The electron temperature, shown in figure 3, increases significantly
with argon content at low pressure but decreases at high pressure.

• The chlorine dissociation fraction, shown in figure 4, increases and be-
comes less dependent on pressure as the argon content is increased.

• The electronegativity, shown in figure 5, decreases similarly with in-
creased argon content at every power and pressure explored.
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Figure 3: The electron temperature versus pressure for pure chlorine,
argon diluted chlorine (10, 50, 90 % Ar) and pure argon gas flows.
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Figure 4: The chlorine dissociation fraction versus pressure for pure
and argon diluted (10, 50 and 90 % Ar) chlorine gas flows.
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Figure 5: The electronegativity versus argon content for varying pres-
sure (p = 1, 10 and 100 mTorr) at Pabs = 500 W and for varying power
(Pabs = 150, 500, and 1000 W) at p = 10 mTorr.
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Figure 6: The fraction of Cl+ of the total positive ion density n+ =
[Cl+] + [Cl+2 ] + [Ar+] versus pressure for pure and argon diluted (10, 50
and 90 % Ar) chlorine gas flows.

• The fractional concentration of Cl+, shown in figure 6, peaks at low
pressure in a pure and lightly argon diluted discharge but when the
argon content is high it peaks at high pressure.

• The total reaction rate for Cl+ creation/destruction, shown in figure
7, increases with argon content until 62 % of the gas flow is Ar.

• Although most Cl+ ions are created by electron impact ionization, the
contribution of charge transfer from Ar+ increases with argon content,
being 21 % in an argon dominated discharge.

• The contribution of bulk processes to Cl+ loss decreases with argon
content while wall recombination becomes the only important loss pro-
cess at high argon content.
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Figure 7: The total and relative reaction rates for (a) the creation and
(b) the destruction of Cl+ ions versus the fractional flow of argon into the
chamber.

Conclusions

• The electron temperature increases with argon content as a result of
the higher ionization potential of Ar than of Cl or Cl2.

• The chlorine dissociation fraction increases significantly and becomes
less dependent on pressure with increased argon content.

• The electronegativity decreases with argon content for the entire range
of pressure and power explored.

• The dependence of the [Cl+]/n+ fraction on pressure can be changed
substantially by diluting the discharge with argon.
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