Jón Tómas Guðmundsson^{1,2}

¹ Science Institute, University of Iceland, Reykjavik, Iceland
²Department of Space and Plasma Physics, KTH Royal Institute of Technology, Stockholm, Sweden

73rd Gaseous Electronics Conference, Virtual Conference, October 5, 2020

A B > A B > A B
 A

Introduction

- The various plasma surface interaction processes have a significant influence on discharge properties
- In discharge modeling these processes are commonly described by parameters that give the probability of occurrence of the process such as
 - surface recombination to form molecules
 - surface quenching of metastable states
 - electron emission from surfaces due to ion, electron and neutral bombardment of surfaces
 - species reflection from surfaces
 - sputter yields due to ion bombardment
 - surface sticking probabilities for atoms and molecules
- The surface interaction parameters, often describe a complex processes, that are not well understood, by a single number

200

A B > A B > A B
 A

Introduction

- These parameters depend on surface temperature, surface type as well as the discharge properties
- Emission of secondary electrons can result from bombardment of electrons, ions or neutrals on a surface
- The yield γ_{see} is defined as the number of secondary electrons emitted per incident species
- The surface recombination probability γ_F of fluorine atoms on various surfaces at 300 and 80 K

ເ 👝 🕟 Kota et al. (±1999) ታVSTA 17 282 ງ < 🖓

Outline

- 1. Atom surface recombination
 - 1.1. Inductively coupled oxygen discharge
 - 1.2. Inductively coupled chlorine discharge
- 2. Surface quenching of metastable molecules
 - Capacitively coupled oxygen discharge
- 3. Sputter yield
 - Reactive high power impulse magnetron sputtering (HiPIMS)

1. Atom surface recombination

A global (volume averaged) model study

The global (volume averaged) model

- The wall recombination coefficient $\gamma_{\rm rec}$ is one of the most important parameters in molecular discharge modelling
- In the global model the diffusional losses of neutral atoms to the reactor walls are given by

$$k_{\text{atom,wall}} = \left[\frac{\Lambda_{\text{atom}}^2}{D_{\text{atom}}} + \frac{2V(2-\gamma_{\text{rec}})}{Av_{\text{atom}}\gamma_{\text{rec}}}\right]^{-1} \text{ s}^{-1}$$

- D_{atom} is the diffusion coefficient for neutral atoms
- $v_{\rm atom} = (8 e T_{\rm g} / \pi m_{\rm atom})^{1/2}$ is the mean atom velocity
- $\gamma_{\rm rec}$ is the wall recombination coefficient for neutral atoms on the wall surface
- ${\scriptstyle \bullet }~\Lambda_{atom}$ is the effective diffusion length of neutral atoms

1.1. Inductively coupled Oxygen discharge

Surface recombination

- The pressure dependence on the wall recombination coefficient was achieved by fitting all the available data for stainless steel surfaces
- For anodized aluminium reactor walls the recombination coefficient is assumed to be a constant $\gamma_{\rm rec} = 0.06$ (Guha et al., 2008)
- The same wall recombination coefficient was used for O(¹D) as no data is available

Gudmundsson and Thorsteinsson (2007) PSST 16 399

Figure 1. The recombination coefficient of oxygen atoms at the chamber walks for stainless steel as a function of pressure. The measured data is taken from, o Singh *et al* [47], × Matsushita *et al* [90], \triangle Mozetic and [21ar] [91], \square Booth and Sadeghi [44] and * Gomez *et al* [46]. The solid line shows a fit to the measured data and the dotted line is a linear extrapolation from $\gamma = 0.5$ at 2mTorr to $\gamma = 1.0$ at vacuum.

The wall recombination coefficient for oxygen atoms on stainless steel surfaces depends on pressure through

$$\gamma_{\rm rec} = 0.1438 \exp(2.5069/p)$$
 $p > 2 \,{\rm mTor}$

Particle densities

- The dominant species is the oxygen molecule in the ground state O₂(X³Σ_g) followed by the oxygen atom in the ground state O(³P)
- The singlet metastable states $O_2(a^1\Delta_g)$ and $O_2(b^1\Sigma_g^+)$ and the metastable atom $O(^1D)$ are also present in the plasma in significant amounts
- a cylindrical stainless steel chamber

radius R = 15 cm and length L = 30 cm $P_{abs} = 500$ W

Toneli et al. (2015a) J. Phys. D 48 325202

Influence of chamber wall and EEDF

- The chamber wall has a significant influence on the dissociation fraction
 - the dissociation fraction is much higher for anodized aluminium reactor walls
- The parameter *x* defines the shape of the electron energy distribution
 - x = 0.5 is concave or bi-Maxwellian
 - x = 1 is Maxwellian distribution
 - x = 2 is Druyvesteyn distribution

1.2. Inductively coupled Chlorine discharge

Surface recombination

- Chlorine is widely used in plasma etching of both semiconductors and metals and chlorine atoms are believed to be the primary reactant
- The dissociation fraction and electronegativity versus the surface recombination of atomic chlorine
- For a large γ_{rec}, the fractional dissociation decreases
- For the $\gamma_{rec} = 0.1$ the chlorine discharge is 80 % dissociated
- The negative ion density exceeds the electron density at $\gamma_{rec} = 0.08$ at a pressure of 100 mTorr

500

Surface recombination

- The wall recombination probability, γ_{rec}, is a very important quantity in all low pressure molecular discharges
- We use the wall recombination coefficient measured by Stafford et al. (2009) for stainless steel
- The wall recombination coefficient depends on the dissociation fraction and the wall material

Guha et al. (2008) J. Appl. Phys. 103 013306

Stafford et al. (2009) J. Phys. D: Appl. Phys. 42 055206

A fit to the measured data is for anodized aluminum

$$\log_{10}(\gamma_{rec}) = -0.82 - 1.59 \ \text{exp} \left(-1.81 \ \times \ \frac{[\text{Cl}]}{[\text{Cl}_2]} \right)$$

and for stainless steel

$$\log_{10}(\gamma_{\rm rec}) = -1.22 - 1.34 \exp\left(-1.48 \times \frac{[0]_{\rm KTH}}{[0]_{\rm C}}\right)$$

Gas temperature

 Donnelly and Malyshev (2000) found that the neutral chlorine gas temperature was between 300 and 1250 K, increasing with power and pressure up to 1000 W and 20 mTorr

Donnelly and Malyshev (2000) Appl. Phys. Lett. 77 2467

A fit through the measured data gives

$$T_{\rm g}(P_{\rm abs}, p) = 300 + s(p) \frac{\log_{10}(P_{\rm abs}/40)}{\log_{10}(40)}$$

where

$$s(p) = 1250 (1 - e^{-0.091 \times p}) + 400 e^{-0.337 \times p}$$

Comparison with experiments

- Densities of neutral Cl atoms and electrons versus power
- The agreement with the measured electron density is excellent
- The calculated density of atomic chlorine is in a very good agreement with the measured data at both 1 and 10 mTorr

Malyshev and Donnelly (2000) J. Appl. Phys. 88 6207

Malyshev and Donnelly (2001) J. Appl. Phys. 90 1130

 inductively coupled cylindrical stainless steel chamber

< □ > < □ > < □ > < □ > <</p>

• L = 20 cm and R = 18.5 cm Thorsteinsson and Gudmundsson (2010a)

Sac

Plasma Sources Sci. Technol. 19 015001

Dilution with oxygen

- When the chlorine discharge is diluted by oxygen chlorine-oxide molecules, such as CIO or CIO₂ are formed at surfaces
- The desorbing flux of CIO₂ was found to be significantly smaller than that of CIO molecules
- The wall recombination coefficient for CIO production was determined by subtracting the Cl₂ production from the total CI wall recombination coefficient

Thorsteinsson and Gudmundsson (2010b) Plasma Sources Sci. Technol. **19** 055008

-

Particle densities

- The total rate for creation and loss of CIO molecules is at maximum when the oxygen content is 65%
- Wall recombination of Cl molecules, is the dominating pathway for creation of CIO molecules
- The bulk processes and recombination of CIO⁺ ions at the wall account for roughly 33–43% of the total rate for CIO creation, combined

Thorsteinsson and Gudmundsson (2010b) PSST 19 055008 2 .

2. Surface quenching of metastable molecules

Capacitively Coupled Oxygen Discharge

Lieberman and Lichtenberg (2005) Principles of Plasma Discharges and Materials Processing, John Wiley & Sons

- A 1D particle-in-cell/Monte Carlo collision simulation
 - Oxygen discharge
 - Capacitively Coupled Oxygen Discharge at 13.56 MHz
 - surface quenching of $O_2(a^1 \Delta_g)$
 - the effect of γ_{see}(ε)
- We use the oopd1 (objective oriented plasma device for one dimension) code to simulate the discharge
- The discharge model includes energy dependent secondary electron emission yield

Gudmundsson et al. Plasma Sources Sci. Technol. 22 035011 (2013)

Oxygen CCP – pressure dependence

• We apply a voltage source with a single frequency

$$V(t) = V_{\rm rf} \sin(2\pi f t)$$

- The electrodes are circular with a diameter of 14.36 cm
- The gap between the electrodes is 4.5 cm
- We set *V*_{rf} = 222 V and *f* = 13.56 MHz
- The neutrals (O₂ and O) are treated as background gas at $T_{\rm g}$ = 300 K with a Maxwellian distribution
- The dissociation fraction and the metastable fraction is found using a global model
- The pressure is varied from 10 50 mTorr

Oxygen CCP – surface quenching of $O_2(a^1 \Delta_g)$

- At 10 mTorr almost all the electron heating occurs in the plasma bulk (the electronegative core) and the electron heating profile is independent of the surface quenching coefficient
- At 50 mTorr only for the highest surface quenching coefficients 0.1 and 0.01 there is some electron heating observed in the bulk region
- Typical value is 0.007 for iron (Sharpless and Slanger, 1989)

Proto and Gudmundsson (2018b) PSST 27 074002

Oxygen CCP – surface quenching of $O_2(a^1 \Delta_g)$

The oxygen discharge

- The discharge model also includes energy dependent secondary electron emission yield
- We have compiled experimental data from the literature on secondary electron emission yields for the species O₂⁺, O⁺, O₂ and O bombarding various metals and substances
- A fit was made through the available experimental data

Oxygen CCP – the effect of $\gamma_{see}(E)$

- Adding secondary electron emission yield
 - increases the electron density
 - increases the electron heating rate in the sheath region
 - the sheath region becomes narrower
 - a high energy tail appears in the EEPF

Hannesdottir and Gudmundsson PSST 25 055002 (2016)

Proto and Gudmundsson (2018a) Atoms 6(4) 65 a

Oxygen CCP – the effect of $\gamma_{see}(E)$

Proto and Gudmundsson (2018a) Atoms 6(4) 65

 Including secondary electron emission increases the electron energy and decreases the electron power absorption

3. Sputter yield

Reactive high power impulse magnetron sputtering (HiPIMS)

Magnetron sputtering discharges

- Magnetron sputtering discharges are widely used in thin film deposition
- In a dcMS the power density (plasma density) is limited by the thermal load on the target
- High ionization of sputtered material requires very high density plasma
- In a HiPIMS discharge a high power pulse is supplied for a short period
 - Iow frequency
 - Iow duty cycle
 - low average power

HiPIMS - Voltage - Current - time

- During reactive sputtering, a reactive gas is added to the inert working gas and a transition to oxide mode is observed
- The Ar/O₂ discharge with titanium target
- The current waveform is highly dependent on the repetition frequency and applied voltage which is linked to oxide formation on the target
- The current is found to increase significantly as the frequency is lowered

Gudmundsson (2016) PPCF 58 014002

- The ionization region model (IRM) was developed to improve the understanding of the plasma behaviour during a HiPIMS pulse and the afterglow
- It is a time dependent global model of the plasma chemistry of the ionization region (IR) is defined next to the race track
- The IR is defined as an annular cylinder with outer radii r_{c2} , inner radii r_{c1} and length $L = z_2 z_1$, extends from z_1 to z_2 axially away from the target

The definition of the volume covered by the IRM

From Raadu et al. (2011) PSST 20 065007

- The sputter yield for the various bombarding ions was calculated by TRIDYN for
 - Metal mode Ti target
 - Poisoned mode TiO₂ target
- The yields correspond to the extreme cases of either clean Ti surface and a surface completely oxidized (TiO₂ surface)
- The sputter yield is much lower for poisoned target

The sputter yield data is from Tomáš Kubart, Uppsala University

 Ar⁺ and Ti⁺-ions contribute most significantly to the discharge current at the cathode target surface – almost equal contribution

The temporal evolution of the neutral species with 5 %

oxygen partial flow rate for Ar/O2 discharge with Ti

target in metal mode.

Gudmundsson et al. (2016) PSST 25(6) 065004

- Ar⁺ contribute most significantly to the discharge current – almost solely – at the cathode target surface
- The contribution of secondary electron emission is very small

The temporal evolution of the neutral species with 5 %

oxygen partial flow rate for Ar/O2 discharge with Ti

target in poisoned mode.

Gudmundsson et al. (2016) PSST 25(6) 065004

- The increase in the atomic oxygen in the ground state is due to:
 - sputtering of O(³P) from the partially to fully oxidized target (dominates)
 - electron impact de-excitation of O(¹D)
 - electron impact dissociation of the O₂ ground state molecule

The temporal evolution of the neutral species with 5 % oxygen partial flow rate for Ar/O_2 discharge with Ti target in transition mode and poisoned mode.

Lundin et al. (2017) JAP 121(17) 171917

200

Summary

Summary

- The importance of surface processes has been demonstrated by a few examples
 - Surface recombination of atoms dictates the dissociation fraction in inductively coupled discharge
 - Surface quenching of molecular metastables dictates the electronegativity and electron power absorption mechansim in a capacitively coupled oxygen discharge
 - The sutter yield determines the dominating ion in a reactive HiPIMS discharge and therefore the dominating the recycling process
- In discharge modeling it is important to include a carefully selected surface process parameters

Acknowledgements

Thank you for your attention

The slides can be downloaded at

http://langmuir.raunvis.hi.is/~tumi/ranns.html

References

- Donnelly, V. M. and M. V. Malyshev (2000). Diagnostics of inductively coupled chlorine plasmas: Measurements of the neutral gas temperature. Applied Physics Letters 77(16), 2467–2469.
- Gudmundsson, J. T. (2016). On reactive high power impulse magnetron sputtering. Plasma Physics and Controlled Fusion 58(1), 014002.
- Gudmundsson, J. T. (2020). Physics and technology of magnetron sputtering discharges. *Plasma Sources Science and Technology 29* in press.
- Gudmundsson, J. T. and D. Lundin (2020). Introduction to magnetron sputtering. In D. Lundin, T. Minea, and J. T. Gudmundsson (Eds.), *High Power Impulse Mangetron Sputtering: Fundamentals, Technologies, Challenges and Applications*, pp. 1–48. Amsterdam, The Netherlands: Elsevier.
- Gudmundsson, J. T., D. Lundin, N. Brenning, M. A. Raadu, C. Huo, and T. M. Minea (2016). An ionization region model of the reactive Ar/O₂ high power impulse magnetron sputtering discharge. *Plasma Sources Science and Technology 25*(6), 065004.
- Gudmundsson, J. T., F. Magnus, T. K. Tryggvason, S. Shayestehaminzadeh, O. B. Sveinsson, and S. Olafsson (2013). Reactive high power impulse magnetron sputtering. In *Proceedings of the XII International Symposium* on Sputtering and Plasma Processes (ISSP 2013), pp. 192–194.
- Gudmundsson, J. T. and E. G. Thorsteinsson (2007). Oxygen discharges diluted with argon: dissociation processes. Plasma Sources Science and Technology 16(2), 399–412.
- Guha, J., V. M. Donnelly, and Y.-K. Pu (2008). Mass and Auger electron spectroscopy studies of the interactions of atomic and molecular chlorine on a plasma reactor wall. *Journal of Applied Physics 103*(1), 013306.
- Hannesdottir, H. and J. T. Gudmundsson (2016). The role of the metastable $O_2(b^1\Sigma_g^+)$ and energy-dependent secondary electron emission yields in capacitively coupled oxygen discharges. *Plasma Sources Science and Technology 25*(5), 055002.

Sac

References

- Kim, S., M. A. Lieberman, A. J. Lichtenberg, and J. T. Gudmundsson (2006). Improved volume-averaged model for steady and pulsed-power electronegative discharges. *Journal of Vacuum Science and Technology A 24*(6), 2025–2040.
- Kota, G. P., J. W. Coburn, and D. B. Graves (1999). Heterogeneous recombination of atomic bromine and fluorine. Journal of Vacuum Science and Technology A 17(1), 282–290.
- Lee, C. and M. A. Lieberman (1995). Global model of Ar, O₂, Cl₂ and Ar/O₂ high-density plasma discharges. *Journal of Vacuum Science and Technology A* 13(2), 368–380.
- Lieberman, M. A. and A. J. Lichtenberg (2005). Principles of Plasma Discharges and Materials Processing (2 ed.). New York: John Wiley & Sons.
- Lundin, D., J. T. Gudmundsson, N. Brenning, M. A. Raadu, and T. M. Minea (2017). A study of the oxygen dynamics in a reactive Ar/O₂ high power impulse magnetron sputtering discharge using an ionization region model. *Journal of Applied Physics 121*(17), 171917.
- Magnus, F., T. K. Tryggvason, S. Olafsson, and J. T. Gudmundsson (2012). Current-voltage-time characteristics of the reactive Ar/O₂ high power impulse magnetron sputtering discharge. *Journal of Vacuum Science and Technology A* 30(5), 050601.
- Malyshev, M. V. and V. M. Donnelly (2000). Diagnostics of inductively coupled chlorine plasmas: Measurement of Cl₂ and Cl number densities. *Journal of Applied Physics 88*(11), 6207 – 6215.
- Malyshev, M. V. and V. M. Donnelly (2001). Diagnostics of inductively coupled chlorine plasmas: Measurement of electron and total positive ion densities. *Journal of Applied Physics 90*(3), 1130–1137.
- Phelps, A. V. and Z. L. Petrović (1999). Cold-cathode discharges and breakdown in argon: surface and gas phase production of secondary electrons. *Plasma Sources Science and Technology* 8(3), R21–R44.
- Phelps, A. V., L. C. Pitchford, C. Pédoussat, and Z. Donkó (1999). Use of secondary-electron yields determined from breakdown data in cathode-fall models for Ar. *Plasma Sources Science and Technology* 8(4), B1–B2.

References

- Proto, A. and J. T. Gudmundsson (2018a). The influence of secondary electron emission and electron reflection on a capacitively coupled oxygen discharge. *Atoms* 6(4), 65.
- Proto, A. and J. T. Gudmundsson (2018b). The role of surface quenching of the singlet delta molecule in a capacitively coupled oxygen discharge. *Plasma Sources Science and Technology* 27(7), 074002.
- Raadu, M. A., I. Axnäs, J. T. Gudmundsson, C. Huo, and N. Brenning (2011). An ionization region model for high power impulse magnetron sputtering discharges. *Plasma Sources Science and Technology* 20(6), 065007.
- Sharpless, R. L. and T. G. Slanger (1989). Surface chemistry of metastable oxygen. II. Destruction of O₂(a¹Δ_g). Journal of Chemical Physics 91(12), 7947 – 7950.
- Statford, L., R. Khare, J. Guha, V. M. Donnelly, J.-S. Poirier, and J. Margot (2009). Recombination of chlorine atoms on plasma-conditioned stainless steel surfaces in the presence of adsorbed Cl₂. *Journal of Physics D: Applied Physics* 42(5), 055206.
- Thorsteinsson, E. G. and J. T. Gudmundsson (2010a). A global (volume averaged) model of a chlorine discharge. *Plasma Sources Science and Technology* 19(1), 015001.
- Thorsteinsson, E. G. and J. T. Gudmundsson (2010b). The low pressure Cl₂/O₂ discharge and the role of ClO. *Plasma Sources Science and Technology 19*(5), 055008.
- Toneli, D. A., R. S. Pessoa, M. Roberto, and J. T. Gudmundsson (2015a). On the formation and annihilation of the singlet molecular metastables in an oxygen discharge. *Journal of Physics D: Applied Physics* 48(32), 325202.
- Toneli, D. A., R. S. Pessoa, M. Roberto, and J. T. Gudmundsson (2015b). A volume averaged global model study of the influence of the electron energy distribution and the wall material on an oxygen discharge. *Journal of Physics D: Applied Physics 48*(49), 495203.

200