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m The rf driven capacitive discharges is widely used

m At low pressure nonlocal effects are important and the
electron-neutral ionization/excitation frequency is typically
fairly uniform across the discharge gap




Introduction

m Radio frequency (rf) capacitively coupled plasma (CCP)
discharges operated in the intermediate pressure regime
(0.2 — 6.0 Torr) are of increasing importance

m In this pressure regime, the mean free path for both ions
and electrons is comparable to or smaller than the
electrode spacing

m Hence the plasma characteristics are significantly different
from that in a low pressure capacitive discharge — the
electron-neutral ionization and excitation are localized at
the sheath edges

m One-dimensional particle-in-cell/Monte Carlo collisional
simulations performed on a capacitive 2.54 cm gap driven
by a sinusoidal rf current density amplitude of 50 A/m? at
13.56 MHz, with the base case being 1.6 Torr argon
discharge




Introduction — argon at 1.6 Torr
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m The profile of the ionization and excitation frequencies
exhibit a peak near the sheath edges and the ionization is
almost nonexistent in the bulk region

m The bulk EEPF (solid line) is Druyvesteyn-like with a
strongly depressed tail above the argon excitation energy
of 11.55 V — no bulk electrons with high energy while in the
sheath (dashed line) it is Maxwellian

m Excited argon and secondary electrons were neglected
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Pressure dependence

m The ionization rate profiles at
m 50 mTorr (upper)
m 1.6 Torr (lower)
m rf current source at 50 A/m?
m The results show varying
completeness of the discharge model
m The blue line indicates simulations
where the metastable Ar™, the
radiative Ar", and the Ar(4p) manifold
are included and modeled as time-
and space-evolving fluid species
m Without excited species there is no
ionization in the bulk
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Pressure dependence

m The time averaged ion density profile @
for various pressures calculated

m without excited state atoms (upper)
m including excited state atoms
treated as a fluid (lower)
m rf current source at 50 A/m? and
13.56 MHz
m The metastable Ar™, the radiative
Ar', and the Ar(4p) manifold are
included and modeled as time- and
space-evolving fluid species
m It is found that the presence of the
excited species influences the
density profile and enhances the
plasma density by a faCtor Of 3 at 16 Wen et al. (2022) IEEE TPS accepted for puf3
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Pressure dependence
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m Percentage (7;) of the total reaction rate of each reaction j
versus background pressure p,
lonization
m R8:e™ + Ar — 2e~ + Ar' dominates at low pressure
m R22: Ar™ + Ar™ — e~ + Ar" + Ar — Penning ionization and e

m R19:e™ + Ar™ — e~ + Ar™ + Ar — step wise ionization take ff
over at higher pressure




Surface effects — secondary
electron emission




Surface effects

m One-dimensional particle-in-cell/Monte Carlo collisional
simulations were performed on a capacitive 2.54 cm gap,
1.6 Torr argon discharge driven by a sinusoidal rf current
density amplitude of 50 A/m? at 13.56 MHz

Table 3. An overview of the four cases explored.

Case Ar™, Ar, Ar(4p) Secondary electrons
Ion Ground state Excited Reflected
As species induced neutrals species
A Neglected Neglected Neglected Neglected Neglected
B Neglected 0.15 Neglected Neglected Neglected
C Neglected Ysee (&) Neglected Neglected Neglected
D Included Ysee (&) Ysee (En) Included 0.2

Gudmundsson et al. (2021) PSST 30 125011




Surface effects
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Table 2. The parameters of the simulation, the energy threshold ) :
above which the PIC dynamics of the neutral particles are dirty metaV
followed, the wall quel‘]cl}mg ;‘md reflection g(vei!lclenla. and 10k Arf-ions " ... g
secondary electron emission yield upon particle impact. -
Species Einr (MV) Yq o2 Ysee P clean metals

F107f /93
Ar 1000 L0 f(&n) 146, 47) <
Ar™ 50 0.5 0.5 [45] 0.21 [48] !
Ar' 50 0.5 0.5 [45] 0.21 [48] w0 Ar-atoms o1
Ar(4p) 50 0.5 0.5 [45] 0.27 [48] !
Art — — (&) 146, 47 . ) H
e — 0.2 [49] — 1u10' 10? 10°

Ton or atom energy [V]
Gudmundsson et al. (2021) PSST 30 125011 based on Phelps and Petrovi¢ (1999) PSST 8 R21

m Secondary electron emission
m lon induced, energy dependent
m Due to bombardment of neutrals in the ground state
m Due to bombardment of excited neutrals




Surface effects

m Adding secondary electron emission
from the electrodes to the discharge
model decreases the time averaged
potential, and adding excited states
to the discharge, decreases the
potential much further

m The electron temperature profile
when the excited state kinetics,
energy dependent secondary
electron emission (both ion and
atom induced) and electron
reflection are included has a T
significantly lower value, about 0.76
V, indicating v-mode operation

Gudmundsson et al. (2021) PSST 30.1250




Surface effects

m The time averaged charged particle
densities

m neglecting excited states and
secondary electron emission

m including excited state kinetics and
energy dependent secondary I .,
electron emission due to ions and Cwfem]
atoms bombarding the electrodes, B T T T
as well as electron reflection o

m For a parallel plate capacitive argon
discharge at 1.6 Torr with a gap
separation of 2.54 cm driven by a 50
A m~2 sinusoidal current source at
13.56 MHz

n x 106 [m=3)
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Surface effects

m The time averaged particle power

10 T primary cloctrons E
absorption profiles e . ]
Upper graph neglecting excited E
states and secondary electron 5 f
emission o

m The power absorption by the T
primary electrons within the S e em
plasma bulk is roughly 8.7 kW/m3 B . T T

Lower graph including excited state = “f %
kinetics and secondary electron Z
emission a [l

m The primary electrons in the bulk 2 U{‘l
region absorbs almost no power Y R TR
~0 W/mS3, while the secondary @ [em]

electrons absorb 1.4 kW/m?3

Gudmundsson et al. (2021) PSST 30125041



Surface effects

m The time averaged power absorption
by the various species 3 Teemw———
Case A: no excited state kinetics nor N?§§§ o oondary clectrons
secondary electron emission £ 400
Case B: no excited state kinetics but =

constant secondary electron

emission

Case C: no excited state kinetics Case

and energy dependent secondary

eleCtron emiSSion Gudmundsson et al. (2021) PSST 30 125011

Case D: including excited state
kinetics, energy dependent
secondary electron emission due to
ions and neutrals, and electron
reflection




Surface effects

m The reaction rates for ionization
processes neglecting excited states T fgf'r 7
and secondary electrons (red) and ?
including constant secondary ;
electron emission (blue) ot S| o)

== secondary electrons
L L 1

m The reaction rates for ionization RN .
processes including excited state
kinetics, energy dependent
secondary electron emission due to

ion and atom bombardment of the FRS ‘;lzgs‘;‘,,f<lfu.\\v>+}\,§..
electrodes, and electron reflection i _;J> +an ®)
m Penning ionzation plays the main ST e

role within the plasma bulk

Gudmundsson et al. (2021) PSST 30.1250




Surface effects

m Electron impact ionization of ground

state argon atoms by secondary Homsaton processes it the argon discharg fo case
electrons dominates (75.7 % — —
contribution) and by primary i) - At AT 126 109
electrons (10.9 % contribution) ‘.dlj e AL: f;:;
m The third most important process is N 039
Penning ionization (metastable N+ A et A AT 110
pooling) Ar™ + Ar™ — e + Ar + ArT, Hecondaryy A ¢ 1 A 00017
which has about a 12.7 %
contribution

Gudmundsson et al. (2021) PSST 30 125011
m Electron impact ionization of the
metastable argon atom (multi-step
ionization) is small, contributing
roughly 0.3 % to the total ionization.




Surface effects
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m The spatio-temporal behavior of the electron power
absorption by primary (left) secondary (rEilghtgequtronEs




Summary
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Surface effects

m When the excited states, and secondary electron emission
due to neutral and ion impact on the electrodes are
included in the discharge model, the discharge operation
transitions from a-mode to v-mode, in which nearly all the
ionization is due to secondary electrons

m Secondary electron production due to the bombardment of
excited argon atoms was approximately 14.7 times greater
than that due to ion bombardment

m Electron impact of ground state argon atoms by secondary
electrons contributes about 76% of the total ionization;
primary electrons, about 11%; metastable Penning
ionization, about 13%; and multi-step ionization, about
0.3%
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