Hydrogen Discharge Diluted with Argon: A Global Model Study

Aron Thor Hjartarson¹, Eythor Gisli Thorsteinsson¹ and Jón Tómas Guðmundsson^{1,2}

¹ Science Institute, University of Iceland, Iceland ²University of Michigan – Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, China

tumi@hi.is

64th Gaseous Electronics Conference Salt Lake City, Utah, November 17., 2011

Introduction

- Hydrogen plasmas play an important role in various fields of science and technology such as in thermonuclear fusion, astrophysics and materials processing
- Negative hydrogen ion sources are needed to produce intense neutral beams for injection into next-generation magnetically confined fusion reactors
- Applications of low pressure high density hydrogen plasmas in materials processing include
 - plasma immersion ion implantation (PIII)
 - hydrogenation

Introduction

- High densities of H and H⁺ particles are desired for efficient hydrogenation
- The dissociation energy of molecular hydrogen is 4.52 eV
- The vibrationally excited hydrogen molecule $H_2(v > 0)$ plays an important role in dissociation and ionization processes in the plasma volume
- The electron affinity of atomic hydrogen is 0.75 eV and the threshold for dissociative attachment is 3.75 eV at v = 0 and decreases to values below 1 eV for v > 6
- The hydrogen discharge is generally considered weakly electronegative

Outline

- The global (volume averaged) model
 - Basic equations
 - Model parameters
- Comparison with measurements
- Particle densities
 - Electronegativity the role of vibrationally excited levels
 - Creation and destruction of H⁻, H₃⁺, and ArH⁺
- Summary

- A steady state global (volume averaged) model was developed for the H₂/Ar discharge
- The following species are included
 - electrons
 - the ground state atoms and molecules: H, Ar, H₂
 - the vibrationally excited hydrogen molecules: $H_2(v = 1 14)$
 - the negative hydrogen ion H⁻
 - \blacksquare the positive ions H⁺, H₂⁺, H₃⁺, Ar⁺
 - electronically excited arogn atoms metastables (Ar^m (1s₅ and 1s₃)), radiatively coupled states (Ar^r (1s₄ and 1s₂)) and Ar(4p)
- The content of the chamber is assumed to be nearly spatially uniform and the power is deposited uniformly into the plasma bulk

■ The particle balance equation for a species *X* is given

$$\frac{\mathrm{d}n^{(X)}}{\mathrm{d}t} = 0 = \sum_{i} R_{\mathrm{Generation},i}^{(X)} - \sum_{i} R_{\mathrm{Loss},i}^{(X)}$$

where $R_{\text{Generation},i}^{(X)}$ and $R_{\text{Loss},i}^{(X)}$, respectively, are the reaction rates of the various generation and loss processes of the species X

■ The power balance equation, which equates the absorbed power $P_{\rm abs}$ to power losses due to elastic and inelastic collisions and losses due to charged particle flow to the walls is given as

$$\frac{1}{V} \Bigg[P_{abs} - \textit{eVn}_e \sum_{\alpha} \textit{n}^{(\alpha)} \mathcal{E}_c^{(\alpha)} \textit{k}_{iz}^{(\alpha)} - \textit{eu}_{B0} \textit{n}_i \textit{A}_{eff} (\mathcal{E}_i + \mathcal{E}_e) \Bigg] = 0$$

For the edge-to-center positive ion density ratio we use

$$egin{aligned} h_{L} &\simeq \left[\left(rac{0.86}{(3 + \eta L/2\lambda_{
m i})^{1/2}} rac{1}{1 + lpha_{
m 0}}
ight)^{2} + h_{
m c}^{2}
ight]^{1/2} \ h_{R} &\simeq \left[\left(rac{0.8}{(4 + \eta R/\lambda_{
m i})^{1/2}} rac{1}{1 + lpha_{
m 0}}
ight)^{2} + h_{
m c}^{2}
ight]^{1/2} \end{aligned}$$

where $\alpha_0 \approx (3/2)\alpha$ is the central electronegativity, $\eta = 2T_+/(T_+ + T_-)$ and

$$h_{\rm c} \simeq \left[\gamma_-^{1/2} + \gamma_+^{1/2} [n_*^{1/2} n_+ / n_-^{3/2}] \right]^{-1} \text{ and } n_* = \frac{15}{56} \frac{\eta^2}{k_{\rm rec} \lambda_{\rm i}} v_{\rm i}$$

is based on a one-region flat topped electronegative profile

$$\gamma_- = T_e/T_-$$
 and $\gamma_+ = T_e/T_+$

 The diffusional losses of the neutral hydrogen atoms to the reactor walls are given by

$$k_{\mathrm{H,wall}} = \left[\frac{\Lambda_{\mathrm{H}}^2}{D_{\mathrm{H}}} + \frac{2V(2 - \gamma_{\mathrm{rec}})}{Av_{\mathrm{H}}\gamma_{\mathrm{rec}}}\right]^{-1} \mathrm{s}^{-1}$$

- lacktriangle $D_{
 m H}$ is the diffusion coefficient for neutral hydrogen atoms
- $v_{\rm Cl} = (8eT_{\rm g}/\pi m_{\rm H})^{1/2}$ is the mean H velocity
- $\ \ \, \ \, \gamma_{\rm rec}$ is the wall recombination coefficient for neutral hydrogen atoms on the wall surface
- \(\Lambda_H\) is the effective diffusion length of neutral hydrogen atoms

$$\Lambda_{\rm Cl} = \left[\left(\frac{\pi}{L} \right)^2 + \left(\frac{2.405}{R} \right)^2 \right]^{-1/2}$$

■ We use a wall recombination coefficient $\gamma_{rec} = 0.023$

Comparison with experiments

Comparison with experiments-Electron density

$$-L = 7.62$$
 cm and $R = 15.24$ cm

— x 2,
$$\square$$
 7 and \circ 30 mTorr and $P_{abs} = 600 \text{ W}$

Gudmundsson, *Plasma Sources Sci. Technol.*, **7** 330 (1998)

ICP stainless steel chamber

-L = 7.5 cm and R = 8 cm

- x 20, and \square 40 mTorr and $P_{abs}=$ 120 W

Kimura and Kasugai, J. Appl. Phys., 107 083308 (2010)

Comparison with experiments-Atomic hydrogen density

- ICP stainless steel chamber
- L = 7.5 cm and R = 8 cm
- x 20, \square 40 mTorr, and \circ 60 mTorr and $P_{abs}=$ 120 W

Kimura and Kasugai, J. Appl. Phys., 107 083308 (2010)

- The measured atomic hydrogen concentration compared to the model calculations
- At 40 and 60 mTorr the density of atomic hydrogen is measured to be somewhat greater than the model implies but at 20 mTorr there is good agreement

Particle densities

Particle densities

- The role of the vibrationally excited molecules increases with increased gas pressure
- The Ar⁺-ion dominates below 10 mTorr and the H₃⁺-ion above 10 mTorr
- a cylindrical aluminum chamber radius R = 15.24 cm length L = 7.62 cm

 $P_{\rm abs} = 600 \text{ W} \text{ and } 50 \% \text{ H}_2/50 \% \text{ Ar}$

Electronegativity

 The negative ion H⁻ is almost entirely produced by dissociative attachment

$$e + H_2(\nu) \longrightarrow H + H^-$$

■ The negative ion H⁻ is mainly lost through ion-ion recombination

$$H^- + ArH^+ \longrightarrow H_2 + Ar$$

up to 36 mTorr pressure

a cylindrical aluminum chamber radius R = 15.24 cm length L = 7.62 cm

Electronegativity

 At higher pressures the mutual neutralization

$$H_3^+ + H^- \longrightarrow 4H$$

dominates and at low pressures

$$e + H^- \longrightarrow H + e + e$$

is important

a cylindrical aluminum chamber radius $R=15.24~\mathrm{cm}$ length $L=7.62~\mathrm{cm}$ $P_{\mathrm{abs}}=600~\mathrm{W}$ and $50~\mathrm{\%}~\mathrm{H_2/50}~\mathrm{\%}~\mathrm{Ar}$

Electronegativity

- The electronegativity is low
 - decreases with increased argon dilution
 - increases with increased discharge pressure
- The cross section for dissociative attachment increases and the threshold decreases with vibrational excitation
- Dissociative attachment from the v = 7 - 9 states contributes roughly 50 % to the creation of H⁻

H_3^+ -ion

■ Creation of H₃⁺ is through

$$\begin{aligned} &H_2 + ArH^+ \longrightarrow H_3^+ + Ar \\ &H_2 + H_2^+ \longrightarrow H + H_3^+ \end{aligned}$$

- The loss of H₃⁺ is dominated by dissociation at the walls
- The ion ArH⁺ is very important
- a cylindrical aluminum chamber radius R = 15.24 cm length L = 7.62 cm

 $P_{\mathrm{abs}} =$ 600 W and 50 % H_{2} /50 % Ar

ArH⁺-ion

■ The atom transfer reaction

$$H_2 + Ar^+ \longrightarrow H + ArH^+$$

is most effictive in the creation of ArH⁺

 The loss is dominated by dissociation at the walls and the proton transfer reaction

$$H_2 + ArH^+ \longrightarrow H_3^+ + Ar$$

a cylindrical aluminum chamber radius R = 15.24 cm length L = 7.62 cm

$$P_{\rm abs} = 600 \text{ W} \text{ and } 50 \% \text{ H}_2/50 \% \text{ Ar}$$

Summary

Summary

- A global model of a H₂/Ar discharge has been developed for the pressure range 1–100mTorr
- Dissociative attachment from the v = 7 9 states contributes the most to the creation of H⁻ or about 50 %
- The influence of argon dilution was explored and in particular the role of the ion ArH⁺
- The density of the ArH⁺-ion is significant, in particular in the pressure range 2–30 mTorr, and it plays a crucial role in the destruction of the H⁻-ion in this pressure range