Jón Tómas Guðmundsson^{1,2}, Daniel Lundin³, Michael A. Raadu¹, Nils Brenning¹ and Tiberu Minea³

 ¹Department of Space and Plasma Physics, School of Electrical Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
² Science Institute, University of Iceland, Reykjavik, Iceland
³ Laboratoire de Physique des Gaz et Plasmas - LPGP, UMR 8578 CNRS, Université Paris-Sud, 91405 Orsay Cedex, France

tumi@hi.is

62nd AVS International Symposium and Exhibition, San Jose, California October 21, 2015

Introduction

- Magnetron sputtering has been the workhorse of plasma based sputtering methods for over four decades
- For many applications a high degree of ionization of the sputtered vapor is desired
 - controlled ion bombardment of the growing film controlled by a negative bias applied to the substrate
 - collimation enhanced step coverage
- Common to all highly ionized magnetron sputtering techniques is a very high density plasma

Introduction

- In a conventional dc magnetron discharge the power density is limited by the thermal load on the target
- In a HiPIMS discharge a high power pulse is supplied for a short period
 - low frequency
 - Iow duty cycle
 - low average power
- High power pulsed magnetron sputtering (HPPMS)

From Gudmundsson et al. (2012), JVSTA 30 030801

- Power density limits
 - $p_{\rm t} = 0.05 \, \rm kW/cm^2 \, \rm dcMS \, limit$
 - $p_t = 0.5 \text{ kW/cm}^2 \text{ HiPIMS limit}$

Sac

Introduction

- Reactive sputtering, where metal targets are sputtered in a reactive gas atmosphere to deposit compound materials is of utmost importance in various technologies
- In reactive sputtering processes a reactive gas O₂, N₂, or CH₄ etc. is mixed to the noble working gas for oxide, nitride, or carbide deposition
- The high electron density in the HiPIMS discharge is expected to enhance the dissociation of the molecular gas

Gudmundsson (2016) Plasma Phys. Control. Fusion 58 014002

Reactive HiPIMS - Applications

Application – Film Resistivity

- TiN as diffusion barriers for interconnects
- HiPIMS deposited films have significantly lower resistivity than dcMS deposited films on SiO₂ at all growth temperatures due to reduced grain boundary scattering
- Thus, ultrathin continuous TiN films with superior electrical characteristics and high resistance towards oxidation can be obtained with HiPIMS at reduced temperatures

From Magnus et al. (2012) IEEE EDL 33 1045

Application – Bragg mirror

- Multilayer structures containing a high-contrast (TiO₂/SiO₂) Bragg mirror fabricated on fused-silica substrates
 - reactive HiPIMS TiO₂ (88 nm)
 - reactive dcMS SiO₂ (163 nm)
 - capped with semitransparent gold
- Rutile TiO₂ (n = 2.59) and SiO₂ (n = 1.45) provide a large index contrast
- Smooth rutile TiO₂ films can be obtained by HiPIMS at relatively low growth temperatures, without post-annealing

Agnarsson et al. (2013) TSF 545 445

From Leosson et al. (2012) Opt. Lett. 37 4026

Reactive HiPIMS - Voltage - Current - Time characteristics

- The current waveform shows an initial pressure dependent peak that is followed by a second phase that is power and material dependent
- The initial phase is dominated by gas ions, whereas the later phase has a strong contribution from self-sputtering
- For some materials, the discharge switches into a mode of sustained self-sputtering

HiPIMS - Voltage - Current - time

- A schematic illustration of the discharge current assuming square shaped voltage pulses
- The current is generally characterized by an initial peak followed by a more or less stable current plateau (bottom current curves)
- In other cases it shows an initial peak followed by a second increase of the discharge current (top current curves)

From Gudmundsson et al. (2012), JVSTA 30 030801

- Ar discharge with Ti target
- The initial peak in current results large flux of atoms from the target
- Collisions of the sputtered atoms with the working gas result in heating and expansion of the working gas – rarefaction
- A significant fraction of the sputtered atoms experience electron impact ionization (the ionization mean free path \sim 1 cm) and are attracted back to the target to participate in the sputtering process **self-sputtering**

HiPIMS - Voltage - Current - time

- During reactive sputtering, a reactive gas is added to the inert working gas
- The current waveform in the reactive Ar/N₂ HiPIMS discharge is highly dependent on the pulse repetition frequency, unlike for pure Ar
- N₂ addition changes the plasma composition and the target condition can also change due to the formation of a compound on its surface

From Magnus et al. (2011) JAP 110 083306

HiPIMS - Voltage - Current - time

- Similarly for the Ar/O₂ discharge, the current waveform is highly dependent on the repetition frequency and applied voltage which is linked to oxide formation on the target
- The current is found to increase significantly as the frequency is lowered

From Magnus et al. (2012), JVSTA 30 050601

HiPIMS - Voltage - Current - time

- As the oxygen flow is increased a transition to oxide mode is observed – The delay in the onset of the current increases, the initial current peak is lowered and a transition to a self-sputtering runaway occurs
- It has been confirmed that in the oxide mode, the discharge is dominated by O⁺-ions, due to oxygen atoms sputtered off the target surface

Aiempanakit et al. (2013), JAP 113 133302

The current waveforms for an Ar/O_2 discharge with a Ti target where the oxygen flow rate is varied – 600 V, 50 Hz and 0.6 Pa

From Gudmundsson et al. (2013), ISSP 2013, p. 192

Gudmundsson (2016) Plasma Phys. Contr. Fus. 58 01400

HiPIMS - Voltage - Current - time

 The observed changes in the discharge current are reflected in the flux of ions impinging on the substrate

From Magnus et al. (2011), JAP 110 083306

- HiPIMS differs significantly from dcMS, due to the fact that self-sputtering quickly becomes dominant and the working gas ions (mostly Ar⁺ and N₂⁺ or O₂⁺) are depleted from the area in front of the target, due to rarefaction
- The secondary electron emission yield is governed by the composition of the target (Ti or TiN or TiO₂) and the type of ions that are bombarding it

- γ_{SE} is practically zero for singly charged metal ions impacting a target of the same metal
- $\gamma_{\rm SE}$ will be higher for self sputtering from a TiN or TiO₂ target, where N⁺-ions or O⁺-ions are also present, than for self-sputtering from a Ti target, where multiply charged Ti ions are needed to create secondary electrons

- At high frequencies, nitride or oxide is not able to form between pulses, and self-sputtering by Ti⁺-ions (singly and multiply charged) from a Ti target is the dominant process
- At low frequency, the long off-time results in a nitride or oxide layer being formed on the target surface and self-sputtering by Ti⁺- and N⁺-ions or O⁺-ions from TiN or TiO₂ takes place

Ionization region model studies of reactive HiPIMS

- The ionization region model (IRM) was developed to improve the understanding of the plasma behaviour during a HiPIMS pulse and the afterglow
- The main feature of the model is that an ionization region (IR) is defined next to the race track
- The IR is defined as an annular cylinder with outer radii r_{c2} , inner radii r_{c1} and length $L = z_2 z_1$, extends from z_1 to z_2 axially away from the target

The definition of the volume covered by the IRM From Raadu et al. (2011). PSST 20 065007

- Geometrical effects are included indirectly as loss and gain rates across the boundaries of this annular cylinder to the target and the bulk plasma
- The temporal development is defined by a set of ordinary differential equations giving the first time derivatives of the electron energy and the particle densities for all the particles
- The electron density is found assuming quasineutrality of the plasma

The definition of the volume covered by the IRM

From Raadu et al. (2011), PSST 20 065007

- The species assumed in the IRM are
 - electrons
 - argon atoms Ar(3s²3p⁶), warm argon atoms in the ground state Ar^W, hot argon atoms in the ground state Ar^H, Ar^m (1s₅ and 1s₃) (11.6 eV), argon ions Ar⁺ (15.76 eV), doubly ionized argon ions Ar²⁺ (27.63 eV)
 - titanium atoms Ti(a³F), titanium ions Ti⁺ (6.83 eV), doubly ionized titanium ions Ti²⁺ (13.58 eV)
 - oxygen molecule in the ground state $O_2(X^3\Sigma_g^-)$, the metastable oxygen molecules $O_2(a^1\Delta_g)$ (0.98 eV) and $O_2(b^1\Sigma_g)$ (1.627 eV), the oxygen atom in the ground state $O(^3P)$, the metastable oxygen atom $O(^1D)$ (1.96 eV), the positive ions O_2^+ (12.61 eV) and O^+ (13.62 eV), and the negative ion O^-

Toneli et al. (2015) J. Phys. D. 48 325202

200

・ロト ・ 伊ト ・ ヨト ・ ヨト

- The sputter yield for the various bombarding ions was calculated by TRIDYN for
 - Metal mode Ti target
 - Poisoned mode TiO₂ target
- The yields correspond to the extreme cases of either clean Ti surface and a surface completely oxidized (TiO₂ surface)

The sputter yield data is from Tomas Kubart, Uppsala University

- The model is applied to explore Ar/O₂ discharge with Ti target in both metal mode and oxide (poisoned) mode
- The IRM is a semi-empirical model in the sense that it uses a measured discharge current waveform as a main input parameter
- For this study we use the measured curve for Ar/O₂ with Ti target at 50 Hz for metal mode and at 15 Hz for poisoned mode

From Magnus et al. (2012), JVSTA 30 050601

- The gas rarefaction is observed for the argon atoms but is more significant for the O₂ molecule
- The density of Ti atoms is higher than the O₂ density
- The atomic oxygen density of is over one order of magnitude lower than the molecular oxygen density – the dissociation fraction is low

The temporal evolution of the neutral species with 5 % oxygen partial flow rate for Ar/O₂ discharge with Ti target in metal mode.

Sac

- Gas rarefaction is observed for both argon atoms and O₂ molecules
- The density of Ti atoms is lower than both the O₂ density and atomic oxygen density
- The atomic oxygen density is higher than the O₂ density in towards the end of the pulse

The temporal evolution of the neutral species with $5\ \%$

oxygen partial flow rate for Ar/O₂ discharge with Ti target in poisoned mode.

nac

- Ar⁺ and Ti⁺-ions dominate the discharge
- Ti²⁺-ions follow by roughly an order of magnitude lower density
- The O₂⁺ and O⁺-ion density is much lower

The temporal evolution of the neutral species with 5 %

oxygen partial flow rate for Ar/O_2 discharge with Ti

target in metal mode

Sac

- Ar⁺-ions dominate the discharge
- Ti⁺, O⁺, have very similar density, but the temporal variation is different, and the O₂⁺ density is slightly lower
- The Ti²⁺-ion density increases fast with time and overcomes the Ti⁺ density towards the end of the pulse

The temporal evolution of the neutral species with 5 %

oxygen partial flow rate for Ar/O₂ discharge with Ti target in poisoned mode.

 Ar⁺ and Ti⁺-ions contribute most significantly to the discharge current

The temporal evolution of the neutral species with $5\ \%$

oxygen partial flow rate for Ar/O_2 discharge with Ti

target in metal mode.

Sac

- Ar⁺ contribute most significantly to the discharge current – almost solely
- The contribution of secondary electron emission is very small

The temporal evolution of the neutral species with $5\ \%$

oxygen partial flow rate for $\mbox{Ar/O}_2$ discharge with Ti

target in poisoned mode.

Sac

Summary

Summary

- The current-voltage-time waveforms in a reactive discharge exhibit similar general characteristics as the non-reactive case
 - the current rises to a peak, then decays because of rarefaction before rising to a self-sputtering dominated phase
- At low repetition frequency, the long off-time results in a nitride or oxide layer being formed on the target surface and an increase in the discharge current

Summary

- An ionization region model was used to explore the plasma composition during the high power pulse
- Comparison was made between the metal mode and the poisoned mode
 - In metal mode Ar⁺ and Ti⁺-ions dominate the discharge and are of the same order of magnitude
 - In poisoned mode Ar⁺-ions dominate the discharge and two orders of magnitude lower, Ti⁺, O⁺, have very similar density, with the O₂⁺ density slightly lower
 - In the metal mode Ar⁺ and Ti⁺-ions contribute most significantly to the discharge current while in poisoned mode Ar⁺ dominate
- Ar⁺-ions are responsible for the increase in the discharge current in poisoned mode

Thank you for your attention

The experimental work was made in collaboration with

- Dr. Fridrik Magnus, Uppsala University, Uppsala, Sweden
- Tryggvi K. Tryggvason, University of Iceland
- We got help with the sputtering yields from
 - Dr. Tomas Kubart, Uppsala University, Uppsala, Sweden
- and the project is funded by
 - Icelandic Research Fund Grant No. 130029-053
 - Swedish Government Agency for Innovation Systems (VINNOVA) contract no. 2014-04876,

The slides can be downloaded at

http://langmuir.raunvis.hi.is/~tumi/hipims.html

References

- Agnarsson, B., F. Magnus, T. K. Tryggvason, A. S. Ingason, K. Leosson, S. Olafsson, and J. T. Gudmundsson (2013). Rutile TiO₂ thin films grown by reactive high power impulse magnetron sputtering. *Thin Solid Films 545*, 445–450.
- Aiempanakit, M., A. Aijaz, D. Lundin, U. Helmersson, and T. Kubart (2013). Understanding the discharge current behavior in reactive high power impulse magnetron sputtering of oxides. *Journal of Applied Physics* 113(13), 133302.
- Anders, A., J. Andersson, and A. Ehiasarian (2007). High power impulse magnetron sputtering: Current-voltage-time characteristics indicate the onset of sustained self-sputtering. *Journal of Applied Physics 102*(11), 113303.
- Gudmundsson, J. T. (2016). On reactive high power impulse magnetron sputtering. *Plasma Physics and Controlled Fusion 58*(1), 014002.
- Gudmundsson, J. T., N. Brenning, D. Lundin, and U. Helmersson (2012). The high power impulse magnetron sputtering discharge. Journal of Vacuum Science and Technology A 30(3), 030801.
- Gudmundsson, J. T., F. Magnus, T. K. Tryggvason, S. Shayestehaminzadeh, O. B. Sveinsson, and S. Olafsson (2013). Reactive high power impulse magnetron sputtering. In *Proceedings of the XII International Symposium* on Sputtering and Plasma Processes (ISSP 2013), pp. 192–194.
- Leosson, K., S. Shayestehaminzadeh, T. K. Tryggvason, A. Kossoy, B. Agnarsson, F. Magnus, S. Olafsson, J. T. Gudmundsson, E. B. Magnusson, and I. A. Shelykh (2012). Comparing resonant photon tunneling via cavity modes and Tamm plasmon polariton modes in metal-coated Bragg mirrors. *Optics Letters* 37(19), 4026–4028.
- Magnus, F., A. S. Ingason, S. Olafsson, and J. T. Gudmundsson (2012). Nucleation and resistivity of ultrathin TiN films grown by high power impulse magnetron sputtering. *IEEE Electron Device Letters* 33(7), 1045 – 1047.
- Magnus, F., O. B. Sveinsson, S. Olafsson, and J. T. Gudmundsson (2011). Current-voltage-time characteristics of the reactive Ar/N₂ high power impulse magnetron sputtering discharge. *Journal of Applied Physics* 110(8), 083306.
- Magnus, F., T. K. Tryggvason, S. Olafsson, and J. T. Gudmundsson (2012). Current-voltage-time characteristics of the reactive Ar/O₂ high power impulse magnetron sputtering discharge. *Journal of Vacuum Science and Technology A* 30(5), 050601.
- Raadu, M. A., I. Axnäs, J. T. Gudmundsson, C. Huo, and N. Brenning (2011). An ionization region model for high power impulse magnetron sputtering discharges. *Plasma Sources Science and Technology 20*(6), 065007.
- Toneli, D. A., R. S. Pessoa, M. Roberto, and J. T. Gudmundsson (2015). On the formation and annihilation of the singlet molecular metastables in an oxygen discharge. *Journal of Physics D: Applied Physics* 48(32), 325202 -

Sac