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Introduction – Magnetron sputtering

In a high power impulse magnetron
sputtering (HiPIMS) the discharge is driven
by high power pulses of low repetition
frequency, and with low duty cycle
The film mass density is higher, the films
exhibit better crystallinity, and overall
improved film properties, when deposited
with HiPIMS
There is a drawback: The deposition rate
is lower for HiPIMS when compared to
dcMS operated at the same average power
Many of the ions of the target material are
attracted back to the target surface by the
cathode potential

From Samuelsson et al. (2010) SCT 202 591
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Ionized flux fraction –
measurements
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Ionized flux fraction – measurements
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The ionized flux fraction and the
deposition rate fraction – measured
by an ion meter in HiPIMS
discharges with Cu and Ti targets
and working gas pressure of 0.3 Pa

Cu: Fischer et al. (2023) PSST 32 125006

Ti: Shimizu et al. (2021) PSST 30 045006
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Ionized flux fraction – measurements

From Fischer et al. (2023) PSST 32 125006

The measured normalized deposition rate (left) and ionized
flux fraction (right) as a function of the peak discharge
current density JD,peak for working gas pressure of (a) 0.25
Pa and (b) 0.5 Pa
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Ionized flux fraction – measurements

The deposition rate (upper) and the
ionized flux fraction (lower) versus
the pulse length
For peak discharge current density of
0.4 A/cm2, 0.7 A/cm2, and 1.0 A/cm2

and argon working gas pressure of
0.3 Pa
The target was 150 mm diameter
chromium disk
The pulse repetition frequency was
adjusted to maintain a constant
time-averaged power of 1.5 kW

From Barynova et al. PSST submitted 2025
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Ionized flux fraction – measurements

The measurements show a decrease
in deposition rate and an increase in
the ionized flux fraction with
increased discharge current density
There are two measures of how good
a HiPIMS discharge is:

the fraction FDR,sput of all the
sputtered material that reaches the
diffusion region (DR)
the fraction Fti,flux of ionized species
in that flux

There is a trade off between the
goals of higher FDR,sput and higher
Fti,flux

From Brenning et al. (2020) JVSTA 38 033008
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The ionization region model
(IRM)
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Ionization region model

The ionization region model (IRM)
is a time-dependent volume
averaged plasma chemical model
of the ionization region (IR) of the
HiPIMS discharge
The IRM gives the temporal
evolution of the densities of ions,
neutrals and electrons
The IRM gives also two internal
parameters that are of importance

αt – ionization probability
βt – back-attraction probability

Detailed model description is given in Huo et al. (2017) JPD 50 354003

The definition of the volume covered by the IRM

The IR is defined as an
annular cylinder of width
wrt = rc2 − rc1 and
thickness L = z2 − z1,
extends from z1 to z2
axially away from the
target

From Raadu et al. (2011) PSST 20 065007
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Ionization region model

The temporal development is defined by a set of ordinary
differential equations giving the first time derivatives of

the electron energy
the particle densities for all the particles (except electrons)

The species assumed in the non-reactive-IRM are
cold electrons eC, hot electrons eH

argon atoms Ar(3s23p6), warm argon atoms in the ground
state ArW, hot argon atoms in the ground state ArH, Arm

(1s5 and 1s3) (11.6 eV), argon ions Ar+ (15.76 eV), doubly
ionized argon ions Ar2+ (27.63 eV)
Metal atoms, sometimes metastable states, metal ion M+,
and doubly ionized metal ions M2+

Detailed model description is given in Huo et al. (2017) JPD 50 354003
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Ionization region model

As an example the particle balance equation for the metal
ion M+ is

dnM+

dt
= k c

iz,Mne,cnM + kh
iz,Mne,hnM︸ ︷︷ ︸

electron impact ionization

+ kP,iznArmnM︸ ︷︷ ︸
Penning ionization

+ kchexc,1nMnAr+ + kchexc,2nM2+nAr︸ ︷︷ ︸
charge exchange

− k c
iz,M+ne,cnM+ − kh

iz,M+ne,hnM+︸ ︷︷ ︸
electron impact ionization to create M2+

−
ΓRT

M+ + ΓBP
M+(SIR − SRT)

VIR︸ ︷︷ ︸
ion flux out of the ionization region
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Ionization region model studies of HiPIMS

The temporal evolution of
the neutral and ion
densities in a discharge
with zirconium target
Ar+ ions dominate the
discharge – but Zr+ ions
are not far off
Ar2+ and Zr2+ions have
much lower densities
Working gas rarefaction is
very apparent

From Suresh Babu et al. (2024) JVSTA 42 043007
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Ionization region model
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The temporal evolution of the discharge current
composition at the target surface for four different targets
With Cu target Cu+ ions dominate, with graphite target Ar+

ions dominate
For Zr and W targets there is a mix of Ar+ and metal ions
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Deposition rate vs ionized flux
fraction
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Deposition rate vs ionized flux fraction – αt and βt

We can relate the measured quantities
normalized deposition rate FDR,sput and
the ionized flux fraction Fti,flux

FDR,sput =
ΓDR

Γ0
= (1− αtβt)

Fti,flux =
ΓDR,ions

ΓDR,sput
=

Γ0αt(1− βt)

Γ0(1− αtβt)
=
αt(1− βt)

(1− αtβt)

to the internal parameters back
attraction probability βt and ionization
probability αt

αt
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Hajihoseini et al. (2019) Plasma 2 201 and later refined by Rudolph et al. (2021) JAP 129 033303
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Deposition rate vs ionized flux fraction – αt and βt

The internal discharge parameters αt and βt from the
ionization region model (IRM)
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The ionization probability αt increases with increased peak
increased discharge current density
The peak discharge current increases with increased
discharge voltage
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Deposition rate vs ionized flux fraction – αt and βt

The internal discharge parameters αt and βt from the
ionization region model (IRM)
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The back-attraction probability βt has less clear
dependence on the peak discharge current density –
decreases with increased peak discharge current density
for Cr and W – no clear trend for Zr
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Deposition rate vs ionized flux fraction – αt and βt

What determines the back-attraction
probability ?
How can one influence the
back-attraction probability ?
The back-attraction probability βt,pulse,
determined by IRM, versus the
self-sputter yield for various target
materials
The data indicate that the
back-attraction probability decreases
roughly linearly with increased
self-sputter yield

From Barynova et al. (2025) PSST 34 06LT01
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Deposition rate vs ionized flux fraction – αt and βt

The fraction of the ion current carried by
Ar+ ions can be estimated using

ζ =
JAr+

JCr+ + JAr+
=

1− αtβtYSS

1 + αtβt(Ytg − YSS)

It is almost 100 % for a discharge with
graphite target and falls to almost zero
for a discharge with copper target
A HiPIMS discharge with graphite target
is operated on working gas recycling
and a discharge with a copper target
operates on self-sputter recycling, while
discharges with titanium, tungsten, and
zirconium targets operate on a mixture
of the two operating modes
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Deposition rate vs ionized flux fraction – αt and βt

The condition for sustained self-sputtering

αtβtYSS ≥ 1

Hosokawa et al. (1980) IVC-8 and Anders et al. (2007) JAP 102 113303

For sustained self-sputtering the noble
working gas is only needed to get the
process started
Since αt < 1 and βt < 1 the condition
YSS > 1 is necessary
This parameter increases with increased
self-sputter yield and approaches
sustained self-sputtering for a chromium
and copper targets
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Summary



Experiments and modelling of HiPIMS discharges with metallic target

Summary

The discharge current composition at the target surface
depends on the target material
There is an inescapable conflict between the goals of
higher deposition rate and higher fraction of ionized
species in the sputtered material flux
The back-attraction probability appears to depend on the
self-sputter yield – it is lower for higher self-sputter yield
The main contributor to working gas rarefaction for low
sputter yield target is electron impact ionization, while for
targets with high sputter yield kick-out by the sputtered
species is the main contributor
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Thank you for your attention
tumi@hi.is

The slides can be downloaded at
http://langmuir.raunvis.hi.is/∼tumi/ranns.html
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