
J. T. Guðmundsson^{1,2}, M. Rudolph³, K. Barynova¹, J. Fischer⁴, S. Suresh Babu¹, N. Brenning^{2,4}, M. A. Raadu², and D. Lundin⁴

¹ Science Institute, University of Iceland, Reykjavik, Iceland
 ² KTH Royal Institute of Technology, Stockholm, Sweden
 ³ Leibniz Institute of Surface Engineering (IOM), Leipzig, Germany
 ⁴ Plasma and Coatings Physics, Linköping University, Sweden

19th International Conference on Plasma Surface Engineering, Erfurt, Germany September 2, 2024

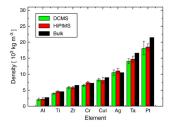
Introduction – Magnetron sputtering

Gudmundsson and Lundin (2020) in High Power Impulse Magnetron Sputtering Discharge, Elsevier, 2020

- Magnetron sputtering has been a highly successfull technique that is essential in a number of industrial applications
 Gudmundsson (2020) PSST 29 113001
- In a high power impulse magnetron sputtering (HiPIMS) the discharge is driven by high power pulses of low repetition frequency, and with low duty cycle
- This results in high discharge current density, increased electron density, and increased ionization of the sputtered species
 Gudmundsson et al. (2012) JVSTA 30 030801

Overview

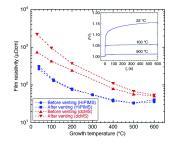
- Thin film deposition
- The ionization region model (IRM)
- Deposition rate vs ionized flux fraction
- Working gas rarefaction
- Summary



Thin film deposition

Thin film deposition

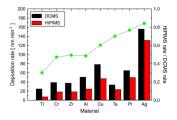
- The film mass density is always higher
- The surfaces are significantly smoother when depositing with HiPIMS compared to dcMS at the same average power
- The films typically exhibit better crystallinity, and overall improved film properties
 - lower electrical resistivity
 - improved optical properties
 - improved mechanical properties
 - better oxidation resistance



From Samuelsson et al. (2010) SCT 202 591

Thin film deposition

- TiN as diffusion barriers for interconnects
- HiPIMS deposited films have significantly lower resistivity than dcMS deposited films on SiO₂ at all growth temperatures due to reduced grain boundary scattering
- Thus, ultrathin continuous TiN films with superior electrical characteristics and high resistance towards oxidation can be obtained with HiPIMS at reduced temperatures

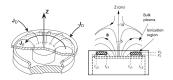


From Magnus et al. (2012) IEEE EDL 33 1045

Thin film deposition

- There is a drawback
- The deposition rate is lower for HiPIMS when compared to dcMS operated at the same average power
- The HiPIMS deposition rates are typically in the range of 30 – 85% of the dcMS rates depending on target material
- Many of the ions of the target material are attracted back to the target surface by the cathode potential

From Samuelsson et al. (2010) SCT 202 591



The ionization region model (IRM)

- The ionization region model (IRM) is a time-dependent volume averaged plasma chemical model of the ionization region (IR) of the HiPIMS discharge
- The IRM gives the temporal evolution of the densities of ions, neutrals and electrons
- The IRM gives also two internal parameters that are of importance
 - $\alpha_{\rm t}$ ionization probability
 - $\beta_t back-attraction probability$

Detailed model description is given in Huo et al. (2017) JPD 50 354003

The definition of the volume covered by the IRM

• The IR is defined as an annular cylinder of width $w_{rt} = r_{c2} - r_{c1}$ and thickness $L = z_2 - z_1$, extends from z_1 to z_2 axially away from the target

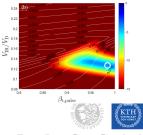
From Raadu et al. (2011) PSST 20 065007

- The temporal development is defined by a set of ordinary differential equations giving the first time derivatives of
 - the electron energy
 - the particle densities for all the particles (except electrons)
- The species assumed in the non-reactive-IRM are
 - $\bullet\,$ cold electrons $e^{C},$ hot electrons e^{H}
 - argon atoms Ar(3s²3p⁶), warm argon atoms in the ground state Ar^W, hot argon atoms in the ground state Ar^H, Ar^m (1s₅ and 1s₃) (11.6 eV), argon ions Ar⁺ (15.76 eV), doubly ionized argon ions Ar²⁺ (27.63 eV)
 - $\, \bullet \,$ Metal atoms, sometimes metastable states, metal ion $M^+,$ and doubly ionized metal ions M^{2+}

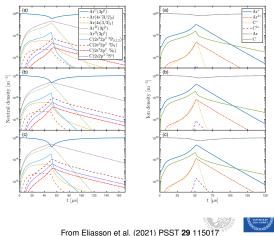
Detailed model description is given in Huo et al. (2017), JPD 50 354003

A B > A B > A B
 A

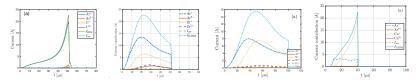

 $\, \bullet \,$ As an example the particle balance equation for the metal ion M^+ is


$$\frac{dn_{M^{+}}}{dt} = \underbrace{k_{iz,M}^{c}n_{e}n_{M} + k_{iz,M}^{h}n_{e}n_{M}}_{\text{electron impact ionization}} + \underbrace{k_{P,iz}n_{Ar^{m}}n_{M}}_{\text{Penning ionization}}$$

$$+\underbrace{k_{chexc,1}n_{M}n_{Ar^{+}} + k_{chexc,2}n_{M^{2+}}n_{Ar}}_{\text{charge exchange}} - \underbrace{k_{iz,M^{+}}^{c}n_{e}n_{M^{+}} - k_{iz,M^{+}}^{h}n_{e}n_{M^{+}}}_{\text{electron impact ionization to create } M^{2+}}$$


$$- \underbrace{\frac{\Gamma_{M^{+}}^{RT} + \Gamma_{M^{+}}^{BP}(S_{IR} - S_{RT})}{\mathcal{V}_{IR}}}_{\text{ion flux out of the ionization region}}$$

- The IRM is a semi-empirical discharge model and requires the measured discharge current and voltage waveforms
- The IRM has three unknown fitting parameters
 - the ion back-attraction probability for the metal ions β_{t,pulse} and gas ions β_{g,pulse}
 - the potential drop across the IR $f = V_{\rm IR}/V_{\rm D}$
 - the electron recapture probability r = 0.7
- This leaves the (β_{t,pulse}, f) parameter space to be explored through the model fitting procedure – the blue zones in the fitting map indicate the smallest mean square error

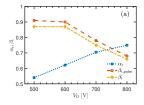


- The temporal evolution of the neutral and ion densities in a discharge with graphite target
- Ar⁺ ions dominate the discharge – constitute over 90% of the discharge current
- Working gas rarefaction is apparent
- The back-attraction probability is high $\beta_{t,pulse} > 0.83$

イロ ディ 戸 ア イ ヨ ア

Sac

C: PSST (2021) 30 115017 Zr: JVSTA (2024) 42 043007 W: PSST (2022) 31 065009 Cu: SCT (2022) 442 128189

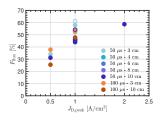

- The temporal evolution of the discharge current composition at the target surface for three different targets
- With Cu target Cu⁺ ions dominate, with graphite target Ar⁺ ions dominate
- For Zr and W targets there is a mix of Ar⁺ and metal ions

- For tungsten target the ionization probability α_t increases with increased discharge voltage
- The peak discharge current increases with increased discharge voltage
- Earlier we have argued that the ionization probability depends only on the peak discharge current and increases with increased peak discharge current

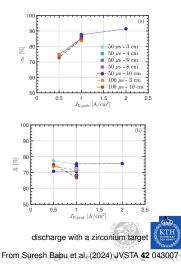
Rudolph et al. (2022) JPD 55 015202

• The back-attraction probability $\beta_{t,pulse}$ decreases with increased discharge voltage

A discharge with a tungsten target


From Suresh Babu et al. (2022) PSST 31 065009

-


I = 1 + 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I =

- For zirconium target the ionization probability α_t increases with increased current density
- The back-attraction probability β_{t,pulse} does not show any trend

 The measured ionized flux fraction is used to lock the model

Deposition rate vs ionized flux fraction

Deposition rate – α_t and β_t

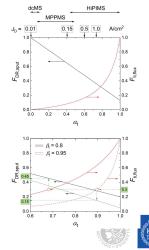
 We can relate the measured quantities normalized deposition rate F_{DR,sput} and the ionized flux fraction F_{ti,flux}

$$F_{\text{DR,sput}} = \frac{\Gamma_{\text{DR}}}{\Gamma_0} = (1 - \alpha_t \beta_t)$$
$$F_{\text{ti,flux}} = \frac{\Gamma_{\text{DR,ions}}}{\Gamma_{\text{DR,sput}}} = \frac{\Gamma_0 \alpha_t (1 - \beta_t)}{\Gamma_0 (1 - \alpha_t \beta_t)} = \frac{\alpha_t (1 - \beta_t)}{(1 - \alpha_t \beta_t)}$$

to the internal parameters back attraction probability β_t

$$\beta_{t} = \frac{1 - F_{DR,sput}}{1 - F_{DR,sput}(1 - F_{ti,flux})}$$

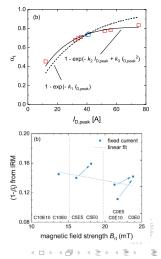
and ionization probability $\alpha_{\rm t}$


$$\alpha_{t} = 1 - F_{DR,sput}(1 - F_{ti,flux})$$

Hajihoseini et al. (2019) Plasma 2 201 and later refined by Rudelph et al. (2021) JAP 129 033303 on a construction of the second second

Deposition rate – Optimization

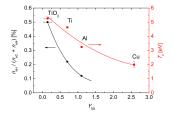
- There are two measures of how good a HiPIMS discharge is:
 - the fraction *F*_{DR,sput} of all the sputtered material that reaches the diffusion region (DR)
 - the fraction *F*_{ti,flux} of ionized species in that flux
- There is a trade off between the goals of higher *F*_{DR,sput} and higher *F*_{ti,flux}
- The question that remains:
 - How can we vary the ionization probability α_t and maybe more importantly the back-attraction probability β_t ?



Depositon rate – Optimization

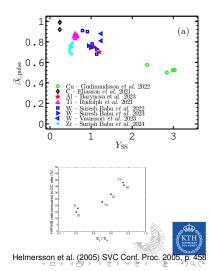
- The internal discharge parameters α_t and β_t from the ionization region model (IRM)
- The ionization probability α_t increases with increased discharge current
- The ion escape fraction

 (1 β_t) versus the magnetic field strength


From Rudolph et al. (2022) JPD 55 015202

Depositon rate – Optimization

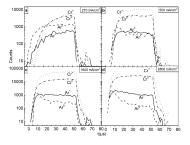
- We know that the electron temperature and the hot electron density fall with increased sputter yield
- Held *et al.* observed that titanium atoms are ionized within 0.5 mm from the target surface (high $\beta_{t,pulse}$), while aluminum and chromium atoms can travel further before being ionized (lower $\beta_{t,pulse}$)
- The measured electron temperature is 4.5 eV for titanium target compared to 2.6 eV (aluminum) and 1.5 eV (chromium)



From Brenning et al. (2017) PSST 26 125003

Deposition rate – Optimization

- What determines the back-attraction probability ?
- How can one influence the back-attraction probability ?
- The back-attraction probability β_{t,pulse}, determined by IRM, versus the self-sputter yield for various target materials
- The data indicate that the back-attraction probability decreases roughly linearly with increased self-sputter yield

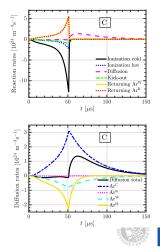


Working gas rarefaction

Working gas rarefaction

- The sputtered species enter the discharge at considerable energy, which is determined by the cohesive energy of the solid target
- The interaction between the energetic sputtered particles and the working gas atoms can lead to a reduction in the working gas density – as has been observed experimentally in the HiPIMS discharge
- Working gas rarefaction has been observed in the HiPIMS discharge

From Alami et al. (2006) APL 89(15) 154104

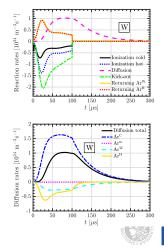


Working gas rarefaction

 HiPIMS discharge with graphite target and J_{D,peak} = 1 A cm⁻²

Eliasson et al. (2021) PSST 30 115017

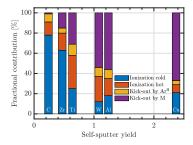
- Argon atoms are lost mainly through electron impact ionization by primary and secondary electrons
- Contributions of kick-out and charge-exchange are negligible
- Diffusion contributes to a net loss of argon atoms during the pulse, but to a flow into the ionization region after the pulse is off


From Barynova et al. PSST 33(6) 065010 9. C.

Working gas rarefaction

 HiPIMS discharge with tungsten target and J_{D,peak} = 0.54 A cm⁻³

Suresh Babu et al. (2022) PSST 31 065009


- The main contributor to the loss of argon atoms from the IR is kick-out by tungsten atoms sputtered from the target (39 – 48 % contribution)
- The second most important loss process is electron impact ionization by secondary electrons followed by electron impact ionization by the primary electrons

From Barymova et al. PSSE33(6) 06501/0 9. C.

Working gas rarefaction

- The relative contributions of the various processes to working gas rarefaction varies greatly depending on the target material
- The various contributions versus the atomic mass of the target material for $J_{
 m D,peak} \sim 1 \
 m A/cm^2$ and $p_{
 m g} \sim 1 \
 m Pa$

From Barynova et al. PSST 33(6) 065010

Summary

Summary

- The discharge current composition at the target surface depends on the target material
- There is an inescapable conflict between the goals of higher deposition rate and higher fraction of ionized species in the sputtered material flux
- The back-attraction probability appears to depend on the self-sputter yield it is lower for higher self-sputter yield
- The main contributor to working gas rarefaction for low sputter yield target is electron impact ionization, while for targets with high sputter yield kick-out by the sputtered species is the main contributor

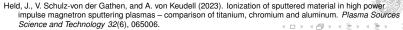
Thank you for your attention tumi@hi.is

The slides can be downloaded at

http://langmuir.raunvis.hi.is/~tumi/ranns.html

Further reading

- J. T. Gudmundsson, Physics and technology of magnetron sputtering discharges, Plasma Sources Science and Technology, 29(11) (2020) 113001
- J. T. Gudmundsson, André Anders, and Achim von Keudell, Foundations of physical vapor deposition with plasma assistance, Plasma Sources Science and Technology, **31**(8) (2022) 083001
- Daniel Lundin, Tiberiu Minea and Jon Tomas Gudmundsson (eds.), High Power Impulse Magnetron Sputtering: Fundamentals, Technologies, Challenges and Applications, Elsevier, 2020



References

- Alami, J., K. Sarakinos, G. Mark, and M. Wuttig (2006). On the deposition rate in a high power pulsed magnetron sputtering discharge. Applied Physics Letters 89(15), 154104.
- Barynova, K., S. Suresh Babu, M. Rudolph, J. Fischer, D. Lundin, M. A. Raadu, N. Brenning, and J. T. Gudmundsson (2024). On working gas rarefaction in high power impulse magnetron sputtering. *Plasma Sources Science and Technology* 33(6), 065010.
- Brenning, N., A. Butler, H. Hajihoseini, M. Rudolph, M. A. Raadu, J. T. Gudmundsson, T. Minea, and D. Lundin (2020). Optimization of HiPIMS discharges: The selection of pulse power, pulse length, gas pressure, and magnetic field strength. *Journal of Vacuum Science and Technology A 38*(3), 033008.
- Brenning, N., J. T. Gudmundsson, M. A. Raadu, T. J. Petty, T. Minea, and D. Lundin (2017). A unified treatment of self-sputtering, process gas recycling, and runaway for high power impulse sputtering magnetrons. *Plasma Sources Science and Technology 26*(12), 125003.
- Eliasson, H., M. Rudolph, N. Brenning, H. Hajihoseini, M. Zanáška, M. J. Adriaans, M. A. Raadu, T. M. Minea, J. T. Gudmundsson, and D. Lundin (2021). Modeling of high power impulse magnetron sputtering discharges with graphite target. *Plasma Sources Science and Technology 30*(11), 115017.
- Gudmundsson, J. T. (2020). Physics and technology of magnetron sputtering discharges. Plasma Sources Science and Technology 29(11), 113001.
- Gudmundsson, J. T., N. Brenning, D. Lundin, and U. Helmersson (2012). The high power impulse magnetron sputtering discharge. *Journal of Vacuum Science and Technology A* 30(3), 030801.
- Gudmundsson, J. T. and D. Lundin (2020). Introduction to magnetron sputtering. In D. Lundin, T. Minea, and J. T. Gudmundsson (Eds.), *High Power Impulse Magnetron Sputtering: Fundamentals, Technologies, Challenges and Applications*, pp. 1–48. Amsterdam, The Netherlands: Elsevier.
- Hajihoseini, H., M. Čada, Z. Hubička, S. Ünaldi, M. A. Raadu, N. Brenning, J. T. Gudmundsson, and D. Lundin (2019). The effect of magnetic field strength and geometry on the deposition rate and ionized flux fraction in the HiPIMS discharge. *Plasma 2*(2), 201–221.

References

- Helmersson, U., M. Lattemann, J. Alami, J. Bohlmark, A. P. Ehiasarian, and J. T. Gudmundsson (2005). High power impulse magnetron sputtering discharges and thin film growth: A brief review. In Proceedings of the 48th Society of Vacuum Coaters Annual Technical Conference, pp. 458 – 464.
- Huo, C., D. Lundin, J. T. Gudmundsson, M. A. Raadu, J. W. Bradley, and N. Brenning (2017). Particle-balance models for pulsed sputtering magnetrons. *Journal of Physics D: Applied Physics 50*(35), 354003.
- Magnus, F., A. S. Ingason, S. Olafsson, and J. T. Gudmundsson (2012). Nucleation and resistivity of ultrathin TiN films grown by high power impulse magnetron sputtering. *IEEE Electron Device Letters* 33(7), 1045 – 1047.
- Raadu, M. A., I. Axnäs, J. T. Gudmundsson, C. Huo, and N. Brenning (2011). An ionization region model for high power impulse magnetron sputtering discharges. *Plasma Sources Science and Technology* 20(6), 065007.
- Rudolph, M., N. Brenning, H. Hajihoseini, M. A. Raadu, T. M. Minea, A. Anders, D. Lundin, and J. T. Gudmundsson (2022). Influence of the magnetic field on the discharge physics of a high power impulse magnetron sputtering discharge. *Journal of Physics D: Applied Physics 55*(1), 015202.
- Rudolph, M., H. Hajihoseini, M. A. Raadu, J. T. Gudmundsson, N. Brenning, T. M. Minea, A. Anders, and D. Lundin (2021). On how to measure the probabilities of target atom ionization and target ion back-attraction in high-power impulse magnetron sputtering. *Journal of Applied Physics* 129(3), 033303.
- Samuelsson, M., D. Lundin, J. Jensen, M. A. Raadu, J. T. Gudmundsson, and U. Helmersson (2010). On the film density using high power impulse magnetron sputtering. *Surface and Coatings Technology 202*(2), 591–596.
- Suresh Babu, S., M. Rudolph, D. Lundin, T. Shimizu, J. Fischer, M. A. Raadu, N. Brenning, and J. T. Gudmundsson (2022). Ionization region model of a high power impulse magnetron sputtering of tungsten. *Plasma Sources Science and Technology* 31(6), 065009.
- Suresh Babu, S., J. Fischer, M. Rudolph, D. Lundin, and J. T. Gudmundsson (2024). Modeling of high power impulse magnetron sputtering discharges with a zirconium target. *Journal of Vacuum Science and Technology* A 42(4), 043007.

