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The global (volume averaged) model

• A global model (Gudmundsson, 2008) is applied to study a reactive
high power impulse magnetron sputtering (HiPIMS) N2/Ar discharge

• The discharge consists of (Thorsteinsson and Gudmundsson, 2009a,b):

– Electrons, Maxwellian-like energy distribution (0.0259 – 10 V)

– vibrational levels of the ground state nitrogen molecule
N2(X

1Σ+
g , v = 0 − 6) (0 − 1.68 eV)

– metastable nitrogen molecule N2(A
3Σ+

u ) (6.17 eV)

– nitrogen atoms N(4S), N(2D) (2.38 eV) and N(2P) (3.58 eV)

– nitrogen ions N+
2 (15.6 eV) and N+ (14.5 eV)

– argon atoms Ar(3s23p6), Arm (1s5 and 1s3) (11.6 eV), Arr (1s4 and
1s2) (11.7 eV), excited argon atoms 4p states Ar(4p) (13.2 eV)

– argon ions Ar+ (15.8 eV)

– titanium atom Ti(a 3F) and titanium ion Ti+ (6.83 eV)
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Figure 1: The temporal evolution of the sputtering yields γsput,X ,
the absorbed power Pabs and the target voltage VT.

• Sputtering of metal atoms from the target by bombardment of positive
ions with the rate coefficients

ksput,X = uBhL
R2

T

R2L
γsput,X (1)

where γsput,X is the sputtering yield for sputtering by positive ion X

• The sputtering yields are dependent on the ion energy, so the temporal
evolution of the target voltage VT must be known

• We use experimentally obtained current–voltage characteristics for the
power Pabs and the target voltage VT, that were measured for a pure
Ar HiPIMS discharge (Gudmundsson et al., 2002)

Results and discussion

• The chamber is assumed to be made of stainless steel, cylindrical with
R = 15 cm and L = 15 cm and the target is made of titanium of
radius RT = 15 cm

• The discharge pressure is 10 mTorr and the total gas flow is Q = 42
sccm which is 95% argon (QAr ≃ 40 sccm, QN2

≃ 2 sccm) and the gas
temperature is assumed to be Tg = 430 K
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Figure 2: The temporal evolution of the ionized metal fraction
nTi+/(nTi+ + nTi) and the fraction of ionized metal flux at the sub-
strate ΓTi+/(ΓTi+ + ΓTi) at and around the tenth pulse period.

• The power is assumed to be deposited uniformly to a reduced volume
Vp below the target that is cylindrical in shape and assumed to have
the dimensions Rp = 15 cm and Lp = 7.5 cm

• The pulse length is roughly 100 µs (FWHM of about 32 µs) and the
repetition frequency is 500 Hz (i.e. a period of T = 2 ms)

• The fraction of ionized metal flux at the substrate is significantly larger
than the ionized metal fraction when the power is on but significantly
smaller when it is off
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Figure 3: The temporal evolution of (a) the creation of Ti and (b)
the loss of Ti atoms over 300 µs at and around the tenth pulse.
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Figure 4: The temporal evolution of (a) the creation of Ti+ and
(b) the loss of Ti+ ions over 300 µs at and around the tenth pulse.

• The most important reactions for creation of Ti atoms, are wall recom-
bination of Ti+ and sputtering by Ar+, Ti+ and N+

• The most important reactions for the loss of Ti atoms are electron im-
pact ionization, diffusion to the wall, and Ar+ and N+ charge transfer

• Electron impact ionization is the dominating reaction in the creation
of Ti+ ions while the power is on but Ar+ – Ti charge transfer is the
dominating reaction after the power is turned off

• Ti+ ions are almost entirely lost to wall recombination
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Figure 5: The temporal evolution of (a) the creation of N+ and
(b) the loss of N+ ions over 300 µs at and around the tenth pulse.

• Electron impact ionization is most important in N+ production when
the power is on, and N – Ar+ charge transfer when the power is off

• The excited atoms are extremely important for the ionization of N+,
ionization of N(2D) and N(2P) being dominant in comparison to ion-
ization of the ground state N(4S) atom for most of the on-period

• Electron impact ionization of N(4S) is only most important for the first
few µs after the power has been turned on

• The excited atoms are much less important during the off period when
essentially all N+ ions are created by Ar+ – N charge transfer
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Figure 6: The temporal evolution of the densities of titanium
atoms and positive ions over the tenth pulse period.

Conclusions

• A global (volume averaged) model of an N2/Ar discharge was applied
to study the reaction meachanism in a HiPIMS discharge with a tita-
nium target
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