

A global model study of a reactive high power impulse magnetron sputtering (HiPIMS) N₂/Ar discharge

E. G. Thorsteinsson^a and J. T. Gudmundsson^{a,b,*},

^a Science Institute, University of Iceland, Reykjavik, Iceland ^bDepartment of Electrical and Computer Engineering, University of Iceland, Reykjavik, Iceland *tumi@hi.is

The global (volume averaged) model

A global model (Gudmundsson, 2008) is applied to study a reactive high power impulse magnetron sputtering (HiPIMS) N₂/Ar discharge
The discharge consists of (Thorsteinsson and Gudmundsson, 2009a,b):

- Electrons, Maxwellian-like energy distribution (0.0259 10 V)- vibrational levels of the ground state nitrogen molecule $N_2(X^1\Sigma_g^+, v = 0 - 6) (0 - 1.68 \text{ eV})$
- metastable nitrogen molecule $N_2(A^3\Sigma_u^+)$ (6.17 eV) - nitrogen atoms N(⁴S), N(²D) (2.38 eV) and N(²P) (3.58 eV) - nitrogen ions N₂⁺ (15.6 eV) and N⁺ (14.5 eV)
- argon atoms $\operatorname{Ar}(3s^23p^6)$, $\operatorname{Ar}^{\mathrm{m}}(1s_5 \text{ and } 1s_3)$ (11.6 eV), $\operatorname{Ar}^{\mathrm{r}}(1s_4 \text{ and } 1s_2)$ (11.7 eV), excited argon atoms 4p states $\operatorname{Ar}(4p)$ (13.2 eV) - argon ions $\operatorname{Ar}^+(15.8 \text{ eV})$
- titanium atom $Ti(a^{3}F)$ and titanium ion Ti^{+} (6.83 eV)

Figure 1: The temporal evolution of the sputtering yields $\gamma_{\text{sput},X}$, the absorbed power P_{abs} and the target voltage V_{T} .

Figure 3: The temporal evolution of (a) the creation of Ti and (b) the loss of Ti atoms over 300 μ s at and around the tenth pulse.

Figure 5: The temporal evolution of (a) the creation of N^+ and (b) the loss of N^+ ions over 300 μ s at and around the tenth pulse.

• Electron impact ionization is most important in N^+ production when the power is on, and $N - Ar^+$ charge transfer when the power is off

• Sputtering of metal atoms from the target by bombardment of positive ions with the rate coefficients

$$k_{\text{sput},X} = u_{\text{B}} h_L \frac{R_{\text{T}}^2}{R^2 L} \gamma_{\text{sput},X}$$

(1)

- where $\gamma_{\text{sput},X}$ is the sputtering yield for sputtering by positive ion X • The sputtering yields are dependent on the ion energy, so the temporal evolution of the target voltage V_{T} must be known
- We use experimentally obtained current–voltage characteristics for the power $P_{\rm abs}$ and the target voltage $V_{\rm T}$, that were measured for a pure Ar HiPIMS discharge (Gudmundsson et al., 2002)

Results and discussion

- The chamber is assumed to be made of stainless steel, cylindrical with R = 15 cm and L = 15 cm and the target is made of titanium of radius $R_{\rm T} = 15$ cm
- The discharge pressure is 10 mTorr and the total gas flow is Q = 42 sccm which is 95% argon ($Q_{\rm Ar} \simeq 40$ sccm, $Q_{\rm N_2} \simeq 2$ sccm) and the gas temperature is assumed to be $T_{\rm g} = 430$ K

- The excited atoms are extremely important for the ionization of N^+ , ionization of $N(^2D)$ and $N(^2P)$ being dominant in comparison to ionization of the ground state $N(^4S)$ atom for most of the on-period
- Electron impact ionization of N(⁴S) is only most important for the first few μ s after the power has been turned on
- The excited atoms are much less important during the off period when essentially all N^+ ions are created by $Ar^+ N$ charge transfer

Figure 6: The temporal evolution of the densities of titanium atoms and positive ions over the tenth pulse period.

Conclusions

Figure 2: The temporal evolution of the ionized metal fraction $n_{\text{Ti}^+}/(n_{\text{Ti}^+} + n_{\text{Ti}})$ and the fraction of ionized metal flux at the substrate $\Gamma_{\text{Ti}^+}/(\Gamma_{\text{Ti}^+} + \Gamma_{\text{Ti}})$ at and around the tenth pulse period.

- The power is assumed to be deposited uniformly to a reduced volume $V_{\rm p}$ below the target that is cylindrical in shape and assumed to have the dimensions $R_{\rm p} = 15$ cm and $L_{\rm p} = 7.5$ cm
- The pulse length is roughly 100 μ s (FWHM of about 32 μ s) and the repetition frequency is 500 Hz (i.e. a period of T = 2 ms)
- The fraction of ionized metal flux at the substrate is significantly larger than the ionized metal fraction when the power is on but significantly smaller when it is off

Figure 4: The temporal evolution of (a) the creation of Ti^+ and (b) the loss of Ti^+ ions over 300 μ s at and around the tenth pulse.

 \bullet The most important reactions for creation of Ti atoms, are wall recombination of Ti^+ and sputtering by Ar^+, Ti^+ and N^+

• The most important reactions for the loss of Ti atoms are electron impact ionization, diffusion to the wall, and Ar^+ and N^+ charge transfer

 Electron impact ionization is the dominating reaction in the creation of Ti⁺ ions while the power is on but Ar⁺ – Ti charge transfer is the dominating reaction after the power is turned off

 \bullet Ti⁺ ions are almost entirely lost to wall recombination

 \bullet A global (volume averaged) model of an N2/Ar discharge was applied to study the reaction meachanism in a HiPIMS discharge with a titanium target

Acknowledgments

This work was partially supported by the Icelandic Research Fund and the University of Iceland Research Fund.

References

J. T. Gudmundsson, J. Alami, and U. Helmersson, Surface and Coatings Technology 161, 249 (2002).

J. T. Gudmundsson, Journal of Physics: Conference Series 100, 082013 (2008).

- E. G. Thorsteinsson and J. T. Gudmundsson, Plasma Sources Science and Technology 18, 045001 (2009a).
- E. G. Thorsteinsson and J. T. Gudmundsson, Plasma Sources Science and Technology **18**, 045002 (2009b).