

On the reaction rates in the low pressure chlorine discharge

E. G. Thorsteinsson^a, A. Th. Hjartarson^a and J. T. Gudmundsson^{a,b,*},

 ^a Science Institute, University of Iceland, Reykjavik, Iceland
^bDepartment of Electrical and Computer Engineering, University of Iceland, Reykjavik, Iceland
*tumi@hi.is

The global (volume averaged) model

- A global (volume averaged) model is applied to study a low pressure (1 - 100 mTorr) high density chlorine discharge in the steady state (Thorsteinsson and Gudmundsson, 2009).
- At low pressure the atomic chlorine Cl is the dominant discharge particle, whereas the chlorine molecule Cl₂ has a larger density at pressures above 20 mTorr.
- \bullet The dissociation fraction, [Cl]/ $n_{\rm g},$ varies from nearly 70 % at 1 mTorr to about 35 % at 100 mTorr.

- In addition to electrons we consider the ground state chlorine molecule $\operatorname{Cl}_2(X\,{}^1\Sigma_{\mathrm{g}}^+, v = 0)$, the vibrationally excited ground state chlorine molecules $\operatorname{Cl}_2(X\,{}^1\Sigma_{\mathrm{g}}^+, v = 1 3)$, the ground state chlorine atom $\operatorname{Cl}(\operatorname{3p}^{5\,2}\mathrm{P})$, the negative chlorine ion Cl^- and the positive chlorine ions Cl^+ and Cl_2^+ .
- \bullet Electrons are assumed to have a Maxwellian-like energy distribution in the range 1-7 V.
- The gas temperature is dependent on both power and pressure as measured by Donnelly and Malyshev (2000).
- The wall recombination coefficient γ_{rec} is dependent on the chlorine dissociation fraction (Stafford et al., 2009).
- The collisional energy loss per electron-ion pair created is defined as

$$\mathcal{E}_{\rm c} = \mathcal{E}_{\rm iz} + \sum_{i} \mathcal{E}_{{\rm ex},i} \frac{k_{{\rm ex},i}}{k_{\rm iz}} + \frac{k_{\rm el} 3m_{\rm e}}{k_{\rm iz}} \mathrm{T}_{\rm e}$$

(1)

where \mathcal{E}_{iz} is the ionization energy, $\mathcal{E}_{ex,i}$ is the threshold energy and $k_{ex,i}$ is the rate coefficient for the *i*-th excitation process and k_{iz} is the ionization rate coefficient for single step ionization.

- The vibrationally excited molecules $Cl_2(v > 0)$ have a density at least a factor of 40 smaller than the ground state $Cl_2(v = 0)$ density.
- Despite the apparently atomic nature of the neutral particles, the density of the atomic ion Cl⁺ is always much smaller than the Cl⁺₂ density, decreasing with pressure.

Figure 3: Model calculations of the atomic chlorine density at 10 and 1 mTorr (— and $-\cdot$ -) and the electron density at 10 mTorr (--) versus absorbed power compared to measurements (Malyshev and Donnelly, 2000, 2001) (\blacksquare , ×, \bigcirc , respectively) at Q = 100sccm (20 sccm at 1 mTorr), R = 18.5 cm and L = 20 cm. A power coupling efficiency of 75 % was assumed for the measurements, i.e. $P_{\rm abs}/P_{\rm rf} = 0.75$.

Figure 5: The relative reaction rates of (a) the creation and (b) the loss of the negatively charged chlorine ion Cl⁻ versus the discharge pressure at $P_{\rm abs} = 323$ W, Q = 100 sccm, R = 18.5 cm and L = 20 cm.

Figure 1: The collisional energy loss per electron-ion pair created \mathcal{E}_c as a function of the electron temperature T_e for the chlorine atom and the chlorine molecule.

Results and discussion

- We compare the calculated Cl atom density at 1 and 10 mTorr and the calculated electron density at 10 mTorr to the measurements of Malyshev and Donnelly (2000, 2001).
- The calculated density of atomic chlorine is in a very good agreement with the measured data at both 1 and 10 mTorr.
- \bullet The agreement with the measured electron density is excellent.

- Production mechanism for Cl⁻ is inherently simple, consisting only of dissociative electron attachment to Cl₂ in different vibrational states.
- Mutual neutralization with Cl_2^+ is the most important loss process for Cl^- , especially at 100 mTorr where it is the dominating process.
- Mutual neutralization with Cl⁺ is significant at low pressures, accounting for 36 % of the total loss at 1 mTorr. The electron detachment from Cl has at most 9 % contribution to the overall loss of Cl⁻ at 1 mTorr, but is negligible at pressures above 10 mTorr.

Conclusions

- Although the dissociation fraction decreases with decreasing power and increasing pressure, the chlorine discharge remains highly dissociated in all conditions, being over 20 % at the lowest power and highest pressure explored.
- Electron impact dissociation is responsible for most of the Cl production, or roughly 55 - 65 %. There are also several processes that contribute significantly, such as wall recombination of Cl⁺, mutual neutralization and dissociative recombination of Cl⁺.

• Cl atoms are lost mainly at the wall and to pumping.

- Cl^- ions are essentially entirely produced in dissociative attachment of electrons to Cl_2 and lost to mutual neutralization with Cl^+ and Cl_2^+ .
- The electronegativity increases rapidly with decreasing dissociation fraction, i.e. increases with increasing pressure and decreasing power.
- The effect of vibrationally excited chlorine molecules $Cl_2(v > 0)$ is not great, at most increasing the Cl⁻ production by about 14 %.

Figure 2: The density of (a) neutral chlorine species and (b) charged chlorine species versus discharge pressure at $P_{\rm abs} = 323$ W, Q = 100 sccm, R = 18.5 cm and L = 20 cm.

Figure 4: The relative reaction rates of (a) the creation and (b) the loss of the neutral chlorine atom Cl versus the discharge pressure at $P_{\rm abs} = 323$ W, Q = 100 sccm, R = 18.5 cm and L = 20 cm.

• Electron impact dissociation is the most important channel for Cl production, wall recombination of Cl^+ is important at low pressure, and the contribution of dissociative electron attachment and mutual neutralization of Cl_2^+ and Cl^- increases with pressure

 Recombination at the wall accounts for 40 – 93 % of Cl loss and is the most important channel for Cl atom loss

Acknowledgments

This work was partially supported by the Icelandic Research Fund, the University of Iceland Research Fund and the Icelandic Student Innovation Fund.

References

- V. M. Donnelly and M. V. Malyshev, Applied Physics Letters **77**, 2467 (2000).
- M. V. Malyshev and V. M. Donnelly, Journal of Applied Physics 88, 6207 (2000).
- M. V. Malyshev and V. M. Donnelly, Journal of Applied Physics **90**, 1130 (2001).
- L. Stafford, R. Khare, J. Guha, V. M. Donnelly, J.-S. Poirier, and J. Margot, Journal of Physics D: Applied Physics **42**, 055206 (2009).
- E. G. Thorsteinsson and J. T. Gudmundsson, Plasma Sources Science and Technology (submitted 2009).