Electron power absorption in radio frequency driven capacitively coupled chlorine discharge

Jón Tómas Guðmundsson^{1,2}, Andrea Proto² and Gardar A. Skarphedinsson²

 Space and Plasma Physics, KTH Royal Institute of Technology, Stockholm, Sweden
 Science Institute, University of Iceland, Reykjavik, Iceland tumi@hi.is

74th Gaseous Electronics Conference October 5., 2021

Introduction

- Chlorine is an electronegative diatomic gas that is widely used in plasma etching of both semiconductors and metals, in particular poly-silicon gate and aluminum interconnects
- Chlorine atoms are believed to be the primary reactant in plasma etching
- The chlorine molecule has
 - a low dissociation energy (2.5 eV)
 - a near-zero threshold energy for dissociative attachment
- All electronic excitations of the molecule appear to be dissociative, and no metastable molecular states are of importance

The 1D particle-in-cell/Monte Carlo collision simulation

The oopd1 1d-3v PIC/MCC code

- We use the oopd1 (objective oriented plasma device for one dimension) code to simulate the discharge
- The oopd1 code was originally developed at the Plasma Theory and Simulation Group at UC Berkeley
- It has 1 dimension in space and 3 velocity components for particles (1d-3v)
- The oopd1 code is supposed to replace the widely used xpdx1 series (xpdp1, xpdc1 and xpds1)
- It is developed to simulate various types of plasmas, including processing discharges, accelerators and beams
 - Modular structure
 - Includes relativistic kinematics
 - Particles can have different weights

The chlorine discharge

- We consider a discharge that consists of:
 - electrons
 - the ground state chlorine molecule $\operatorname{Cl}_2(X^1\Sigma_g^+, \nu=0)$,
 - the ground state chlorine atom Cl(3p⁵ ²P)
 - the negative chlorine ion CI[−]
 - the positive chlorine ions Cl⁺ and Cl₂⁺
- We apply a global model¹ beforehand to calculate the fraction of CI atoms

Thorsteinsson and Gudmundsson (2010) Plasma Sources Sci. Technol., 19(1) 015001

The chlorine discharge

■ The reaction set for the chlorine is comprehensive and includes 44 reactions

Huang and Gudmundsson (2013) Plasma Sources Sci. Technol., 22(5) 055020

Voltage source operated at a single frequency

$$V(t) = V_{\rm rf} \sin(2\pi f t)$$

gap = 2.54 cm, V_{rf} = 222 V and f = 13.56 MHz

Proto and Gudmundsson (2021) PSST 30(6) 065009

- The time averaged charged particle density profiles of a parallel plate capacitively coupled chlorine discharge
- At low pressures, the profile for Cl₂⁺ ions is cosine-like or parabolic since Cl₂⁺ ions are lost mainly due to diffusion to the walls
- As the pressure increases, the recombination between Cl₂⁺ and Cl⁻ ions becomes the major loss mechanism for Cl₂⁺ ions and the density profile for Cl₂⁺ and Cl⁻-ions becomes flat in the bulk region

- The electronegativity in the discharge center is very high and increases with increased operating pressure
- Negative ion creation proceeds via electron impact dissociative attachment whose cross-sections are high
- Drift-ambipolar (DA) power absorption is expected within the electronegative core

Skarphedinsson and Gudmundsson (2020) PSST 29(8) 084004

■ To determine the electron power absorption mechanisms we apply Boltzman term analysis

Surendra and Dalvie (1993) PRE 48(5) 3914 and Schulze et al. (2018) 27(5) 055010

- The electric field within the electronegative core constitutes contributions through various different phenomena
- The electric field is composed of six terms

$$E = -\underbrace{\frac{m_{e}}{e} \frac{\partial u_{e}}{\partial t}}_{I} + \underbrace{\frac{m_{e}}{e} \frac{u_{e}^{2}}{n_{e}} \frac{\partial n_{e}}{\partial x}}_{II} + \underbrace{\frac{m_{e}}{e} \frac{u_{e}}{n_{e}} \frac{\partial n_{e}}{\partial t}}_{III} - \underbrace{\frac{T_{e}}{n_{e}} \frac{\partial n_{e}}{\partial x}}_{IV}$$

$$-\underbrace{\frac{\partial T_{e}}{\partial x}}_{e} - \underbrace{\frac{m_{e}u_{e}\nu_{c}}{e}}_{e}, \tag{1}$$

■ The electron absorbed power can be determined as follows

$$J_{e} \cdot E = \underbrace{m_{e} u_{e} n_{e} \frac{\partial u_{e}}{\partial t}}_{I} - \underbrace{m_{e} u_{e}^{3} \frac{\partial n_{e}}{\partial x}}_{II} - \underbrace{m_{e} u_{e}^{2} \frac{\partial n_{e}}{\partial t}}_{III}$$
$$+ \underbrace{e u_{e} T_{e} \frac{\partial n_{e}}{\partial x}}_{IV} + \underbrace{e n_{e} u_{e} \frac{\partial T_{e}}{\partial x}}_{V} + \underbrace{m_{e} n_{e} \nu_{c} u_{e}^{2}}_{VI}$$
(2)

- Terms I and III power absorption due to electron inertia
- Term II the electron density gradient
- Term IV ambipolar field electron density gradient
- Term V the electron temperature gradient
 - Terms IV and V are pressure or collisionless heating
- Term VI electron neutral collisions or Ohmic heating

- The spatio temporal behavior of the various terms that constitute the electron power absorption
 - Terms I and III electron inertia
 - Term I electron density gradient
 - Terms IV and V pressure (collisionless) heating
 - Term VI Ohmic heating

Proto and Gudmundsson (2021) PSST 30(6)

- The time averaged electron power absorption profile of
 - term IV (red line)
 - term V (blue dashed line)
 - term VI (green dot dashed line)
- At 1 Pa the pressure terms and the Ohmic term contribute to the electron power absorption
- At higher pressures Ohmic power absorption dominates
- At 35 Pa striations are observed

Proto and Gudmundsson (2021) PSST 30(6) 065009

x [cm]

- The space averaged electron power absorption profile terms
 - $t/\tau_{\rm rf} = 0.25$ blue bar
 - $t/\tau_{\rm rf} = 0.5 \text{ red bar}$
 - time averaged green bar
- At 1 Pa the pressure terms and the Ohmic term contribute to the electron power absorption
- At higher pressures Ohmic power absorption dominates

Proto and Gudmundsson (2021) PSST 30(6) 065009

- The spatio temporal behavior of the total electron power absorption
 J_e · E over the full gap length for a capacitively coupled chlorine discharge
- At 1 Pa there is clear sign of drift ambipolar heating (DA-mode) and stochastic heating (α-mode)
- At 35 and 50 Pa there are indications of striations in addition to drift ambipolar heating (DA-mode) and stochastic heating (α-mode)

- The electron energy probability function (EEPF) in the discharge center is Druyvesteyn like at all pressures
- This is expected when there is significant Ohmic heating in the plasma bulk

Dual frequency voltage source

$$V(t) = \frac{V_0}{2}\sin(2\pi ft) + \frac{V_0}{2}\sin(4\pi ft + \theta)$$

gap = 2.54 cm, V_0 = 222 V and f = 13.56 MHz

- By applying voltage at two or more frequencies, a fundamental frequency and its harmonics the ion bombarding energy can be controlled
- lacktriangleright By adjusting the phase angle heta between the fundamental and the second harmonic a dc self-bias voltage can be generated
- This gives separate control of the ion flux and ion energy in a capacitively coupled discharge
- Electrically asymmetric discharge is formed in otherwise a geometrically symmetric reactor

Huang and Gudmundsson (2014)

TPS 42(10) 2854

Skarphedinsson and Gudmundsson (2020) PSST 29(8) 084004

- The IED for Cl₂⁺ ions bombarding the electrodes while varying the phase angle, between the fundamental and the second harmonic
- The grounded (upper row) and the driven (lower row)

- The mean ion energy bombarding both the electrodes is shown versus the phase angle θ
- At 1 and 10 Pa the mean ion energy on the grounded electrode increases by a factor of roughly 1.2 as the phase angle is increased from 0 to 90° – a narrow control range
- At 50 Pa the mean ion energy does not depend on the phase angle

Summary

Summary

- The chlorine discharge exhibits high electronegativity
- At the lowest pressure (1 Pa) the electron power absorption is due to both the pressure and the Ohmic terms and at higher pressure Ohmic terms dominate (drift-ambipolar (DA) mode)
- The electron power absorption increases in amplitude and the power absorption by the ions decreases with increased pressure
- The mean ion bombarding energy can be tuned nearly independently of the ion flux at 1 and 10 Pa through the electrical assymmetry effect, but the available control range is rather limited At the highest pressure (50 Pa) it cannot be controlled

References

The slides can be downloaded at

http://langmuir.raunvis.hi.is/~tumi/plasma.html

- Gudmundsson, J. T., E. Kawamura, and M. A. Lieberman (2013). A benchmark study of a capacitively coupled oxygen discharge of the oopd1 particle-in-cell Monte Carlo code. *Plasma Sources Science and Technology 22*(3), 035011.
- Huang, S. and J. T. Gudmundsson (2013). A particle-in-cell/Monte Carlo simulation of a capacitively coupled chlorine discharge. Plasma Sources Science and Technology 22(5), 055020.
- Huang, S. and J. T. Gudmundsson (2014). Ion energy and angular distributions in a dual-frequency capacitively coupled chlorine discharge. IEEE Transactions on Plasma Science 42(10), 2854–2855.
- Proto, A. and J. T. Gudmundsson (2021). Electron power absorption in radio frequency driven capacitively coupled chlorine discharge. *Plasma Sources Science and Technology* 30(6), 065009.
- Schulze, J., A. Derzsi, K. Dittmann, T. Hemke, J. Meichsner, and Z. Donkó (2011). Ionization by drift and ambipolar electric fields in electronegative capacitive radio frequency plasmas. *Physical Review Letters* 107, 275001.
- Schulze, J., Z. Donkó, T. Lafleur, S. Wilczek, and R. P. Brinkmann (2018). Spatio-temporal analysis of the electron power absorption in electropositive capacitive RF plasmas based on moments of the Boltzmann equation. *Plasma Sources Science and Technology* 27(5), 055010.
- Skarphedinsson, G. A. and J. T. Gudmundsson (2020). Tailored voltage waveforms applied to a capacitively coupled chlorine discharge. *Plasma Sources Science and Technology 29*(8), 084004.
- Surendra, M. and M. Dalvie (1993). Moment analysis of rf parallel-plate-discharge simulations using the particle-in-cell with Monte Carlo collisions technique. *Physical Review E* 48(5), 3914–3924.
- Thorsteinsson, E. G. and J. T. Gudmundsson (2010). A global (volume averaged) model of a chlorine discharge. Plasma Sources Science and Technology 19(1), 015001.
- Wen, D.-Q., J. Krek, J. T. Gudmundsson, E. Kawamura, M. A. Lieberman, and J. P. Verboncoeur (2021). Benchmarked and upgraded particle-in-cell simulations of capacitive argon dischargeat intermediate pressure. The role of metastable atoms. *Plasma Sources Science and Technology 30*, accepted.

