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Introduction

m Chlorine is an electronegative diatomic gas that is widely
used in plasma etching of both semiconductors and
metals, in particular poly-silicon gate and aluminum
interconnects

m Chlorine atoms are believed to be the primary reactant in
plasma etching
m The chlorine molecule has
m a low dissociation energy (2.5 eV)
m a near-zero threshold energy for dissociative attachment
m All electronic excitations of the molecule appear to be
dissociative, and no metastable molecular states are of
importance




The 1D particle-in-cell/Monte
Carlo collision simulation




The oopdl 1d-3v PIC/MCC code

m We use the oopd1 (objective oriented plasma device for
one dimension) code to simulate the discharge

m The oopdl code was originally developed at the Plasma
Theory and Simulation Group at UC Berkeley

m |t has 1 dimension in space and 3 velocity components for
particles (1d-3v)

m The oopd1 code is supposed to replace the widely used
xpdx1 series (xpdpl, xpdcl and xpds1)

m It is developed to simulate various types of plasmas,
including processing discharges, accelerators and beams

m Modular structure
m Includes relativistic kinematics
m Particles can have different weights

Gudmundsson et al. (2013) Plasma Sources Sci. Technol., 22(3) 035011

Wen et al. (2021) Plasma Sources Sci. Technol., 30 accepted



The chlorine discharge

m We consider a discharge that consists of:

m electrons
m the ground state chlorine molecule CI2(X1Zg+, v =0),

» the ground state chlorine atom CI(3p°® 2P)
m the negative chlorine ion CI~
m the positive chlorine ions CI™ and CI3
= We apply a global model’ beforehand to calculate the
fraction of Cl atoms

1 Thorsteinsson and Gudmundsson (2010) Plasma Sources Sci. Technol., 19(1) 015001




The chlorine discharge

m The reaction set for the chlorine is comprehensive and
includes 44 reactions

Huang and Gudmundsson (2013) Plasma Sources Sci. Technol., 22(5) 055020




Electron power absorption

Voltage source operated at a single frequency
V(t) = Vigsin(2rft)

gap =2.54cm, V=222V and f = 13.56 MHz




Electron power absorption
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m The time averaged charged particle density profiles of a
parallel plate capacitively coupled chlorine discharge

m At low pressures, the profile for ClJ ions is cosine-like or
parabolic since ClI3 ions are lost mainly due to diffusion to
the walls

m As the pressure increases, the recombination between CI
and Cl~ ions becomes the major loss mechanism for Clgr
ions and the density profile for CIJ and CI~-ions becomes
flat in the bulk region




Electron power absorption

m The electronegativity in the 200_'2 R |
discharge center is very high o Drad, g
and increases with increased 130 . ° 1
operating pressure % ook o ° o o g -
m Negative ion creation R ’ |
proceeds via electron impact
dissociative attachment whose o=t o n =

cross-sections are high p [Pa]

m Drift-ambipolar (DA) power
absorption is expected within
the electronegative core

Schulze et al. (2011) PRL 107(27) 275001

Skarphedinsson and Gudmundsson (2020) PSST 29(8) 084004




Electron power absorption

m To determine the electron power absorption mechanisms
we apply Boltzman term analysis
Surendra and Dalvie (1993) PRE 48(5) 3914 and Schulze et al. (2018) 27(5) 055010
m The electric field within the electronegative core constitutes
contributions through various different phenomena

m The electric field is composed of six terms
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Electron power absorption

m The electron absorbed power can be determined as follows
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Terms | and Il — power absorption due to electron inertia
Term Il —the electron density gradient
Term IV — ambipolar field — electron density gradient
Term V — the electron temperature gradient

m Terms IV and V are pressure or collisionless heating

Term VI — electron neutral collisions or Ohmic heating




Electron power absorption

m Terms IV and V — pressure
(collisionless) heating
m Term VI — Ohmic heating
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Electron power absorption

m The time averaged electron power
absorption profile of
m term IV (red line)
m term V (blue dashed line)
m term VI ( )
m At 1 Pa the pressure terms and
the Ohmic term contribute to the
electron power absorption

m At higher pressures Ohmic power
absorption dominates

m At 35 Pa striations are observed
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Electron power absorption

m The space averaged electron
power absorption profile terms

m {/7s = 0.25 blue bar
m {/7¢ = 0.5red bar
m time averaged
m At 1 Pa the pressure terms and
the Ohmic term contribute to the
electron power absorption

m At higher pressures Ohmic power
absorption dominates

Proto and Gudmundsson (2021) PSST 30(6) 065009
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Electron power absorption

m The spatio temporal behavior of . ]
the total electron power absorption  ° l. "'
J. - E over the full gap length for a 1

e - N .,
capacitively coupled chlorine M

'
discharge i
!

ambipolar heating (DA-mode) and
stochastic heating (a-mode)

m At 35 and 50 Pa there are ,
indications of striations in addition 0.5f(b5)
to drift ambipolar heating
(DA-mode) and stochastic heating
(a-mode)

Proto and Gudmundsson (2021) PSST 30(6) 065009

m At 1 Pathere is clear sign of drift —~
- - :mem |

50 Pa




Electron power absorption

m The electron energy probability
function (EEPF) in the
discharge center is
Druyvesteyn like at all
pressures

m This is expected when there is
significant Ohmic heating in
the plasma bulk
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Tailored voltage waveforms

Dual frequency voltage source
V(t) = % sin(27ft) + % sin(4rft + 0)

gap =2.54cm, V, =222V and f = 13.56 MHz




Tailored voltage waveforms

m By applying voltage at two or more
frequencies, a fundamental frequency
and its harmonics the ion bombarding
energy can be controlled

m By adjusting the phase angle 6 between
the fundamental and the second
harmonic a dc self-bias voltage can be
generated

m This gives separate control of the ion
flux and ion energy in a capacitively
coupled discharge

m Electrically asymmetric discharge is
formed in otherwise a geometrically
symmetric reactor

Angle [degree]

Huang and Gudmundsson (2014)

TPS 42(10) 2854




Tailored voltage waveforms
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Skarphedinsson and Gudmundsson (2020) PSST 29(8) 084004
= The IED for CI3 ions bombarding the electrodes while
varying the phase angle, between the fundamental and the
second harmonic
m The grounded (upper row) and the driven (lower row)
electrode




Tailored voltage waveforms
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Summary
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Summary

m The chlorine discharge exhibits high electronegativity

m At the lowest pressure (1 Pa) the electron power
absorption is due to both the pressure and the Ohmic
terms and at higher pressure Ohmic terms dominate
(drift-ambipolar (DA) mode)

m The electron power absorption increases in amplitude and
the power absorption by the ions decreases with increased
pressure

m The mean ion bombarding energy can be tuned nearly
independently of the ion flux at 1 and 10 Pa through the
electrical assymmetry effect, but the available control
range is rather limited — At the highest pressure (50 Pa) it
cannot be controlled
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