Particle in cell Monte Carlo collision simulations of capacitive Ar/Cl₂ discharges

Jón Tómas Guðmundsson^{1,2} and Bahram Mahdavipour²

¹Space and Plasma Physics, KTH Royal Institute of Technology, Stockholm, Sweden ²Science Institute, University of Iceland, Reykjavik, Iceland tumi@hi.is

52nd IEEE International Conference on Plasma Science (ICOPS) Berlin, Germany, June 19, 2025

イロト イ理ト イヨト イヨト

The oopd1 1d-3v PIC/MCC code

- We use the oopd1 (objective oriented plasma device for one dimension) code to simulate the discharge
- The oopd1 code was originally developed at the Plasma Theory and Simulation Group at UC Berkeley
- It has 1 dimension in space and 3 velocity components for particles (1d-3v)
- Modular structure
- Includes relativistic kinematics

Gudmundsson et al. (2013) Plasma Sources Sci. Technol., 22(3) 035011

Wen et al. (2021) Plasma Sources Sci. Technol., 30(10) 105009

The oopd1 1d-3v PIC/MCC code

- We consider a chlorine discharge that consists of:
 - electrons
 - the ground state chlorine molecule $Cl_2(X^1\Sigma_g^+, v = 0)$,
 - the ground state chlorine atom Cl(3p^{5 2}P)
 - the negative chlorine ion Cl⁻
 - the positive chlorine ions Cl⁺ and Cl₂⁺

```
Huang and Gudmundsson (2013) Plasma Sources Sci. Technol., 22(5) 055020
```

- We consider an argon discharge that consists of:
 - electrons
 - the ground state argon atom Ar
 - the metastable argon atom Ar^m (two levels as one species)
 - the radiative levles of the argon atom Ar^r (two levels as one species)
 - the excited argon levels Ar(4p) (all as one species)
 - the argon ion Ar⁺

Gudmundsson et al. (2021) Plasma Sources Sci. Technol., 30(12) 125011

Electron power absorption Chlorine

Voltage source operated at a single frequency

$$V(t) = V_{\rm rf} \sin(2\pi f t)$$

gap = 2.54 cm, V_{rf} = 222 V and f = 13.56 MHz

Electron power absorption – Chlorine

Proto and Gudmundsson (2021) PSST 30(6) 065009

- The time averaged charged particle density profiles of a parallel plate capacitively coupled chlorine discharge
- At low pressures, the profile for Cl⁺₂ ions is cosine-like or parabolic since Cl⁺₂ ions are lost mainly due to diffusion to the walls
- As the pressure increases, the recombination between Cl⁺₂ and Cl⁻ ions becomes the major loss mechanism for Cl⁺₂ ions and the density profile for Cl⁺₂ and Cl⁻-ions becomes flat in the bulk region

Electron power absorption – Chlorine

- The spatio temporal behavior of the various terms that constitute the electron power absorption
 - Terms I and III electron inertia
 - Term II electron density gradient
 - Terms IV and V pressure (collisionless) heating
 - Term VI Ohmic heating

Proto and Gudmundsson (2021) PSST 30(6) 065003 KTH Approach based on Surendra and Dalvie (1993) PRE 48(5) 391-

200

and Schulze et al. (2018) PSST 27(5) 055010

Electron power absorption – Chlorine

- The space averaged electron power absorption profile terms
 - $t/\tau_{\rm rf} = 0.25$ blue bar
 - $t/\tau_{\rm rf} = 0.5 \text{ red bar}$
 - time averaged green bar
- At 1 Pa the pressure terms and the Ohmic term contribute to the electron power absorption
- At higher pressures Ohmic power absorption dominates

Proto and Gudmundsson (2021) PSST 30(6) 065009

Surface effects Chlorine

Voltage source operated at a single frequency

 $V(t) = V_{\rm rf} \sin(2\pi f t)$

gap = 2.54 cm, V_{rf} = 222 V and f = 13.56 MHz

Sac

Secondary electron emission due to

- ion bombardment of the electrodes
- neutral bombardment of the electrods
 - Using fits for argon bombardent developed by Phelps and Petrović (1999)
- electron bombardment of the electrodes
 - Using the modified Vaughan method as described by Wen et al. (2023)

- The electron density, the Cl⁻ density, and the electronegativity in the discharge center (α₀) versus pressure
- With increasing pressure the electronegativity in the discharge center α₀ increases before it stabilizes at a relatively constant level
- Secondary electron emission from the electrodes leads to a reduction in electronegativity, which is especially noticeable at higher pressures

Mahdavipour and Gudmundsson (2024) PSST 33(6) 065006

- \blacksquare The creation and loss of ${\rm Cl}_2^+$ ions
- Electron impact ionization creates the Cl⁺₂ ions
- At the lower pressures the Cl₂⁺ ions are almost entirely lost as they bombard the electrodes
- With increasing pressure to 50 Pa the role of ion-ion mutual recombination increases

Mahdavipour and Gudmundsson (2024) PSST 33(6) 065006

- The creation and loss of Cl⁻ ions
- The creation of the negative ion Cl⁻ is almost entirely due to dissociative attachment
- The dominating loss processes for the negative ion Cl⁻ at 50 Pa is ion-ion mutual neutralization Cl⁻ + Cl₂⁺
- Lowering the pressure associative detachment by the CI atom and detachment by the CI₂ molecule play an increasing role, with over 50 % contribution at 2 Pa

Mahdavipour and Gudmundsson (2024) PSST 33(6) 065006

I = 1 = 1

Current source operated at a single frequency

$$J(t) = J_{\rm rf} \sin(2\pi f t)$$

gap = 2.54 cm, J_{rf} = 50 A/m² and f = 13.56 MHz, p = 6.67 Pa

Case	exited species	ions	neutrals	electrons
	0.0	0.0	0.0	0.0
I	0.0	0.0	0.0	0.0
II	included	0.0	0.0	0.0
Ш	included	$\gamma_{\mathrm{see},\mathrm{i}}(\mathcal{E}_{\mathrm{i}})$	$\gamma_{\mathrm{see},\mathrm{n}}(\mathcal{E}_{\mathrm{n}})$	$\gamma_{\text{see,e}}(\mathcal{E}_{\text{e}}, \theta)$

- We explored three cases
 - Neglecting excited states of argon and all secondary electron emission
 - Including excited states of argon and neglecting all secondary electron emission
 - Including excited states of argon and all secondary electron emission

- Ar/Cl₂ mixture at 6.67 Pa
- The electronegativity increases with increased chlorine fraction
- The plasma bulk width decreases with increased chlorine fraction
- Gap width 2.5 cm, driving current density 50 A/m² and frequency 13.56 MHz
- The argon model includes excited argon atoms

Sac

- The spatio-temporal behavior of primary electron power absorption at (a) 0.5 % and (c) 2 % chlorine
 - Left: neglecting excited argon atoms
 - Right: including excited states of the argon atom

< □ > < 同 > <

- Ar/Cl₂ mixture at 6.67 Pa
- The time-averaged electron power absorption for varying chlorine dilution
 - (a) neglecting excited argon states
 - (b) including excited argon states

- Ar/Cl₂ mixture at 6.67 Pa
- The electronegativity decreases with addition of excited argon states
- The electronegativity decreases with addition of secondary electron emission from electrodes
- The plasma bulk width increases with addition of secondary electron emission from electrodes

- Ar/Cl₂ mixture at 6.67 Pa
- The creation and loss of the Cl⁺₂ ion
- The role of Penning ionization becomes rather significant as excited states of argon are included in the discharge model
- Gap width 2.5 cm, driving current density 50 A/m² and frequency 13.56 MHz

- Ar/Cl₂ mixture at 6.67 Pa
- The creation and loss of the negative Cl⁻ ion
- The creation of the negative ion Cl⁻ is almost entirely due to dissociative attachment as for pure chlorine discharge
- The role of secondary electrons becomes significant as they are included in the discharge model
- Ion-ion recombination with Ar⁺ is the main loss process

- Ar/Cl₂ mixture at 6.67 Pa
- The creation and loss of the Ar⁺ ion
- The contribution of secondary electrons becomes significant as they are included in the discharge model

Summary

Summary

- The chlorine discharge exhibits high electronegativity
- At the lowest pressure (1 Pa) the electron power absorption is due to both the pressure and the Ohmic terms and at higher pressure Ohmic terms dominate (drift-ambipolar (DA) mode)
- Penning ionization of the chlorine molecule is rather significant source of Cl₂⁺
- The role of secondary electrons becomes significant for the dissociative attachment to create Cl⁻ as they are included in the discharge model

Thank you for your attention tumi@hi.is

References

- Gudmundsson, J. T., E. Kawamura, and M. A. Lieberman (2013). A benchmark study of a capacitively coupled oxygen discharge of the oopd1 particle-in-cell Monte Carlo code. *Plasma Sources Science and Technology 22*(3), 035011.
- Gudmundsson, J. T., J. Krek, D.-Q. Wen, E. Kawamura, and M. A. Lieberman (2021). Surface effects in a capacitive argon discharge in the intermediate pressure regime. *Plasma Sources Science and Technology 30*(12), 125011.
- Huang, S. and J. T. Gudmundsson (2013). A particle-in-cell/Monte Carlo simulation of a capacitively coupled chlorine discharge. *Plasma Sources Science and Technology 22*(5), 055020.
- Mahdavipour, B. and J. T. Gudmundsson (2024). On the influence of electrode surfaces on the plasma chemistry of a capacitive chlorine discharge. *Plasma Sources Science and Technology* 33(6), 065006.
- Phelps, A. V. and Z. L. Petrović (1999). Cold-cathode discharges and breakdown in argon: surface and gas phase production of secondary electrons. *Plasma Sources Science and Technology* 8(3), R21–R44.
- Proto, A. and J. T. Gudmundsson (2021). Electron power absorption in radio frequency driven capacitively coupled chlorine discharge. *Plasma Sources Science and Technology* 30(6), 065009.
- Schulze, J., A. Derzsi, K. Dittmann, T. Hemke, J. Meichsner, and Z. Donkó (2011). Ionization by drift and ambipolar electric fields in electronegative capacitive radio frequency plasmas. *Physical Review Letters* 107, 275001.
- Schulze, J., Z. Donkó, T. Lafleur, S. Wilczek, and R. P. Brinkmann (2018). Spatio-temporal analysis of the electron power absorption in electropositive capacitive RF plasmas based on moments of the Boltzmann equation. *Plasma Sources Science and Technology* 27(5), 055010.
- Surendra, M. and M. Dalvie (1993). Moment analysis of rf parallel-plate-discharge simulations using the particle-in-cell with Monte Carlo collisions technique. *Physical Review E* 48(5), 3914–3924.
- Wen, D.-Q., J. Krek, J. T. Gudmundsson, E. Kawamura, M. A. Lieberman, and J. P. Verboncoeur (2021). Benchmarked and upgraded particle-in-cell simulations of capacitive argon discharge at intermediate pressure: The role of metastable atoms. *Plasma Sources Science and Technology* 30(10), 105009.
- Wen, D.-Q., J. Krek, J. T. Gudmundsson, E. Kawamura, M. A. Lieberman, P. Zhang, and J. P. Verboncoeur (2023). On the importance of excited state species in low pressure capacitively coupled plasma argon discharges. *Plasma Sources Science and Technology* 32(6), 064001.

Sac