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Introduction

e Oxygen discharges have been applied to numerous applications
— ashing of photoresist
— removing polymer films
— oxidation or deposition of thin film oxides
— sterilization

e Oxygen is a diatomic gas that has been particularly well
studied

e The presence of negative ions alters the overall discharge

phenomena with additional volume recombination loss
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Introduction

e We report on a volume averaged global model calculation of a
low pressure oxygen discharge
e This work has been made in collaboration with
— Prof. Michael A. Lieberman
and is based on the work of
— Chris Lee (Lee, 1995)
— Kedar K. Patel (Patel, 1998)

and started as an experimental work on oxygen discharges
together with

— Alexei M. Marakhtanov
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Introduction

e The main idea of a global model is to neglect the complexity
which arises with spatial variations

e The model can include a large number of reactions in order to
model a processing plasma with a limited computing power

e The model does not describe spatial distribution but captures
scalings of plasma parameters with control parameters

e The global model is an ideal tool to investigate the plasma
chemistry

e The methods and assumptions of the model are discussed in
several publications (Lee et al., 1994; Lee and Lieberman, 1995;
Patel, 1998; Gudmundsson et al., 2000, 2001)
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/Assumptions

e Steady state is assumed

All densities are assumed to be volume averaged

— The electron density is assumed to be uniform except near
the sheath edge

— The negative ion density drops to zero at the sheath edge

All particles are assumed to be created uniformly throughout
the discharge volume

Electrons are assumed to have a Maxwellian energy
distribution in the range 1 — 7 eV

The gas and ion temperature are assumed to be 600 K

A cylindrical discharge with dimensions L = 7.6 cm and
K R =15.24 cm is assumed
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Is oxygen a detachment-dominated
gas or not?
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Assumptions

e The model includes thirteen species

electrons,

— molecular oxygen in ground state 02(329 ), metastable
molecular oxygen Oz(a'A,) and O(b'E}) and the
Herzberg states Oy(A®Y], ABA,, cy),

— atomic oxygen in ground state O(®P),
metastable atomic oxygen O('D) and ozone O3,

— the positive ions Ot and OF

— the negative ions O~, O, and Oj

e The reaction rate coefficients have been revised from earlier

work (Gudmundsson et al., 2001; Gudmundsson, 2004)
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Motivation
e The metastable oxygen atom O(1D) has a threshold energy of
1.96 €V and a lifetime of 147.1 s

e The metastable oxygen molecule Oz(a'A,) has a threshold
energy of 0.98 eV and a lifetime of 4400 s

e Detachment by collisions of ions with the metastable molecule
O2(a'A,) is generally suggested to be a significant loss process
for the negative oxygen ions (Katsch et al., 2000; Franklin,
2000; Ivanov et al., 1999)

o What is the role of recombination ?
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Ion-ion recombination

e For mutual neutralization of OF by O~
0" +0"—0+0
we propose
4.0 x 10~ (300/T3)>* m? /s.
e These replace 2.7 x 107'3(300/7})/? m?/s and

2.0 x 10~3(300/T})/2 m® /s (Eliasson and Kogelshatz, 1986;
Kossyi et al., 1992) that are commonly used

e This is based on recent cross section measurements by Hayton
and Peart (1993) (Gudmundsson and Lieberman, 2004)
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e The neutral densities at Pyps = 500 W
e Atomic oxygen is of great importance below 10 mTorr

e Molecular oxygen dominates above 10 mTorr

K. The densities of O('D) and Oz(a'A,) are significant J
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/Ion-ion recombination \

e For mutual neutralization of OF by O~
0" +05 — 0+0,
O +0F —30
we propose
2.6 x 107 (300/7;)°* m? /s.
for each reaction

e These replace values of 2.0 x 107 m3 /s, 1.0 x 10713 m3/s and
0.96 x 1013 m3 /s (Kossyi et al., 1992; Eliasson and
Kogelshatz, 1986) commonly used

e This is based on recent cross section measurements by Padgett

K and Peart (1998) (Gudmundsson and Lieberman, 2004) J
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Neutrals
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e The neutral densities at Pyps = 300 W

e Molecular oxygen dominates the entire pressure range 1 — 100

N /
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Neutrals

o,
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e The neutral densities at Paps = 2000 W

e Atomic oxygen dominates the entire pressure range 1 — 100

K mTorr
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/Creation of O(°P)
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K increasing pressure

e Dissociation from O2(X) is the main source of O(°P)
e Deexcitation from O(!D) is important below 20 mTorr

e The role of quenching of O(*D) by O3(X) increases with
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/Dissociation \

e

°

o

e

Fractional dissociation
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e The fractional dissociation

— increases with increased applied power
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K — decreases with increased neutral gas pressure J
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/Loss of O(°P) \
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e The oxygen atom O(®P) is mainly lost through recombination
at the wall

Ko We assume a wall recombination coefficient of yrec.0 = 0.5 J
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of interest
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e The density of the metastable singlet delta state Oz(a'A,) is
roughly 2 — 11 % of the total Oy density in the pressure range

e The density of the Og(bIZ;) and the Herzberg states is

K roughly 1 — 2 % of the total Oy density
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/Loss of Os(a'A,)
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e The metastable Oz(a'A,) is mainly lost through by electron

e+ Og(a'Ay) — O(PP) + O(’P) + e

K e+ 02(a'A,) — OCP)+ O('D) +e

~
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Creation of Oy(a'A))
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e The metastable Og(alAg) is mainly created by electron impact

excitation
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/Loss of Oy(a'A)) )
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e Deexcitation
e+ O0q(a'A,) — OQ(X3Z;) +e
plays increasing role with increasing pressure

e The contribution of ionization is roughly 10 % at 1 mTorr and
falls with increased pressure

e The contribution of quenching at the wall is negligible up to 10

K mTorr pressure and increases to roughly 10 % at 100 mTorr J
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/Creation of O('D)
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e The metastable O('D) is mainly from dissociation
e+ 02(X°%,) — OCP) + O('D) + e

e The second most important source is direct excitation

K e+O0CP) — O('D) +e
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Positive ions

108,

10YL o' o) |
& F s T T
€ .-~ 7
< 10167 _

1015 L L ol L L L

10° 10" 10°
p [mlorr]

e The O™ ion is the dominant positive ion below 10 mTorr

e The O ion is the dominant positive ion above 20 mTorr

-
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/Loss of O('D) )
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e The O('D) is mainly lost by recombination at the wall at low
pressures

e At higher pressure quenching by molecular oxygen is the main
loss

K O('D) 4+ Oy — products J

22

/Creation of O \
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e The OF ion is mainly created by electron impact ionization of
the oxygen molecule in the ground state

e+ 02(X°%;) — OF +2e
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Loss of O3
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e The OF ion is mainly lost to the chamber walls

e Recombination is important, in particular at higher pressure

-
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e The O ion is mainly lost to the chamber walls

e Charge transfer is important at higher pressure
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/Creation of O"
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e The O™ ion is mainly created by electron impact ionization
from the oxygen atom

e+ 02(°P) — OT + 2¢

27

K e+ 02('D) — OF +2¢

/

26

Negative ions
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e Oxygen discharges are weakly electronegative

e The electronegativity increases with decreasing applied power

and increasing pressure

-

/

28



-~

-

Negative ions
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e The dominant negative ion is O~

e The density of O; and Og is significantly smaller
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Loss of O
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e At low pressure (< 3 mTorr) electron impact detachment
dominates
e+0" — OCP) +2¢
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reation of O~
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e Creation of O~ is mainly through dissociative electron

attachment to the oxygen molecule
e+02(X) — 0" +0

e+ Oz(a) — O~ +0O
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/Loss of O~
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e At higher pressure ( > 20 mTorr) associative detachment by

oxygen atom dominates

OCP)+ 0" — Oz +e

for roughly 30 — 40 % of the total O~ loss

e Detachment by Oz(a) is negligible below 10 mTorr, its role

increases with increasing pressure and its contribution is
roughly 22 % at 100 mTorr

At low pressures ( < 10 mTorr) ion-ion recombination accounts

/
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/Summary

e A global (volume averaged) model of an oxygen discharge has
been demonstrated

e New rate coefficients for ion-ion recombination are proposed

e The reaction rates for creation and loss of the main species of
the oxygen discharge have been reviewed

e Creation of O~ is mainly through dissociative electron
attachment to the oxygen molecule in ground state and the
singlet delta state

e Electron impact detachment dominates destruction of O~ at

low pressure

e Associative detachment dominates destruction of O~ at high

K pressure
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