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Introduction

• The oopd1 particle-in-cell Monte Carlo (PIC-MC) code is used to sim-
ulate a capacitively coupled discharge in oxygen

• oopd1 is a one-dimensional object-oriented PIC-MC code in which the
model system has one spatial dimension and three velocity components

• It contains models for planar, cylindrical, and spherical geometries and
replaces the xpdx1 series

• The oxygen discharge is of vital importance in various materials pro-
cessing applications such as ashing of photoresist, etching of polymer
films and oxidation and deposition of thin film oxides

• The oxygen chemistry is rather involved, in particular due to the pres-
ence of metastable molecular oxygen

•Global model studies indicate that at low pressure (≤ 10 mTorr) and
in particular at higher absorbed power the discharge is highly disso-
ciated and oxygen atoms dominate the discharge and the O+-ion is
the dominating charged particle (Gudmundsson and Lieberman, 1998;
Gudmundsson et al., 2001)

• Electron impact detachment and ion-ion neutralization dominate the
loss of negative ions at low pressure, while detachment by oxygen atoms
dominates at higher pressures (≥ 20 mTorr)

The oxygen reaction set

• The revised oxygen model includes, in addition to electrons, the oxy-
gen molecule in ground state, the oxygen atom in ground state, the
negative ion O−, and the positive ions O+ and O+
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•We make a comparison of the new oopd1 code to the well known xpdp1
code which has a limited reaction set that includes, in addition to elec-
trons, the oxygen molecule in ground state, the negative ion O−, and
the positive ion O+

2

• The cross sections for the collisions among the oxygen species have
been significantly revised from the xpdp1 code (Vahedi and Surendra,
1995)

Results and discussion
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Figure 1: The electron temperature profile for a parallel plate ca-
pacitively coupled oxygen discharge at 50 mTorr with with a gap
separation of 4.5 cm by a 222 V voltage source at 13.56 MHz.

•We assume a parallel plate capacitively coupled oxygen discharge at 50
mTorr with with a gap separation of 4.5 cm

• The discharge is driven by a 222 V voltage source at 13.56 MHz

• These are the same parameters as explored in Lichtenberg et al. (1994)
using the xpdp1 code which then was driven by an rf current source of
0.4 A

•We explore three cases

– Case 1: xpdp1

– Case 2: oopd1 using the xpdp1 cross section set

– Case 3: oopd1 using the full revised oopd1 cross section set

electron impact O2

e + O2 −→ O2 + e elastic scattering x
e + O2(r = 0) −→ e + O2(r > 0) rotational excitation x
e + O2(v = 0) −→ e + O2(v > 0) vibrational excitation x
e + O2 −→ e + O2(a

1∆g) metastable excitation (0.98 V) x
e + O2 −→ e + O2(b

1Σ+
g ) metastable excitation (1.63 V) x

e + O2 −→ e + O2(A
3Σ+

u , A
′3∆u, c

1Σ−
u ) metastable excitation (4.05 V) x

e + O2 −→ O(3P) + O(3P) + e dissociation (6.12 V) x
e + O2 −→ O(3P) + O(1D) + e dissociation (8.4 V) x
e + O2 −→ O(1D) + O(1D) + e dissociation (9.97 V) x
e + O2 −→ O+

2
+ 2e electron impact ionization x

e + O2 −→ e + O + O(3p3P) dissociative excitation (14.7 V) x
e + O2 −→ O + O− dissociative attachment x
e + O2 −→ O+ + O− + e polar dissociation
e + O2 −→ O+ + O + 2e dissociative ionization

electron impact O

e + O −→ O + e elastic scattering
e + O(3P) −→ O(1D) + e excitation to 1D (1.96 eV)
e + O(3P) −→ O(1S) + e excitation to 1S (4.18 eV)
e + O(3P) −→ O(3P0) + e excitation to 3P0 (15.65 eV)
e + O(3P) −→ O(5S0) + e excitation to 5S0 (9.14 eV)
e + O(3P) −→ O(3S0) + e excitation to 3S0 (9.51 eV)
e + O −→ O+ + 2e ionization

detachment

e + O− −→ O + 2e electron impact detachment x
O− + O2 −→ O + O2 +e detachment by oxygen molecule x
O− + O −→ O2 + e detachment by oxygen atom

recombination

e + O+

2
−→ O(3P) + O(1D) dissociative recombination x

O− + O+

2
−→ O + O2 mutual neutralization x

O+ + O− −→ O + O mutual neutralization

charge exchange

O+

2
+ O2 −→ O2 + O+

2
charge exchange x

O+ + O2 −→ O + O+

2
charge exchange

O+ + O −→ O + O+ charge exchange
O+

2
+ O −→ O2 + O+ charge exchange

O+

2
+ O2 −→ O+ + O + O2 fragmentation by energetic O+

2

scattering

O− + O2 −→ O− + O2 scattering x
O + O2 −→ O + O2 scattering x
O+

2
+ O2 −→ O+

2
+ O2 scattering x

O+ + O2 −→ O+ + O2 scattering
O2 + O2 −→ O2 + O2 scattering
O + O −→ O + O scattering

x reaction included in the limited reaction set of xpdp1
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Figure 2: The electron heating rate for a parallel plate capacitively
coupled oxygen discharge at 50 mTorr with with a gap separation
of 4.5 cm by a 222 V voltage source at 13.56 MHz.

• There are some differences between the xpdp1 and oopd1 that include:

– oopd1 and xpdp1 use different algorithms for the scattering of the in-
cident and ejected electrons, e.g. oopd1 uses a relativistic algorithm
for electron impact ionization while xpdp1 uses a non-relativistic
algorithm

– The xpdp1 uses the non-isotropic differential cross section as de-
scribed by Vahedi and Surendra (1995) and Surendra et al. (1990)
while the oopd1 uses the isotropic differential cross sections for elec-
tron scattering given by Okhrimovskyy et al. (2002)
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Figure 3: The (a) O−-ion density profile, (b) O+
2 -ion density pro-

file, and (c) electron density profile for a parallel plate capacitively
coupled oxygen discharge at 50 mTorr with with a gap separation
of 4.5 cm by a 222 V voltage source at 13.56 MHz.

Conclusions

•A new PIC-MC code, the oopd1, was compared to the well estab-
lished xpdp1 and demonstrated for simulation of capacitively coupled
rf discharges in oxygen

• The code includes significantly revised cross section database for col-
lisional processes in oxygen, as well as the addition of O atoms and
O+-ions and the relevant reactions and cross sections
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