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Introduction

The particle-in-cell Monte Carlo collsion simulations are
frequently used to illustrate physical mechanisms in
low-temperature plasmas
The particle in cell algorithm approximates the distribution
function with a set of computational particles that are
evolved in time according to Newton’s laws
The electric and magnetic fields acting on the particles are
computed self consistently by solving the Maxwell’s
equations
Their basic formulations is conceptually very simple
Thanks to PIC/MCC simulations, significant progress has
been made in the understanding of fundamental plasma
phenomena



Introduction

With improved models it is becoming possible to make
quantitative predictions for real applications
This makes it is even more urgent to apply:

Verification: A comparison of simulations and analytical
solutions to test the intrinsic consistency of a model
Validation: A comparison of simulations with experimental
results or observations
Benchmarking: A comparison of two or more models
under the same conditions, but with different numerical
implementations or on different scales (like particle or fluid
models)

Ute Ebert et al., Plasma Sources Science and Technology, Special Issue on Verification, Validation and

Benchmarking of Low-temperature Plasma Models



Introduction

The American Society of Mechanical Engineers (ASME) Guide
defines verification as:

Verification: the process of determining that a
computational model accurately represents the underlying
mathematical model and its solution

and code verification as
Code verification: the process of determining that the
numerical algorithms are correctly implemented in the
computer code and of identifying errors in the software
Oberkampf and Roy (2010), Verification and Validation in Scientific Computing, Cambridge University Press



Introduction

Code verification usually involves:
performing simple tests (e.g., energy conservation tests)
comparing simulation results with results from other codes
(also known as code-to-code benchmark)
quantifying the numerical error with respect to the exact
solution
testing the convergence of the numerical solution to the
exact solution
comparing the rate of convergence of the numerical
solution to the expected order of the numerical scheme
(order-of-accuracy tests)

Riva et al. (2017) Physics of Plasmas, 24(5) 055703



Validation: XPDP1 in argon
performing simple tests



Validation: XPDP1 in argon

An early version of XPDP1 was validated
against measurements of the electron
energy distribution and plasma parameters
in a capacitive argon discharge

Vahedi et al. (1993) PSST 2 273

Godyak and Piejak (1990) PRL 65(8) 996



Validation: XPDP1 in argon

Vahedi et al. (1993) PSST 2 273

Godyak and Piejak (1990) PRL 65(8) 996

The electron energy probability function (EEPF)



Validation: XPDP1 in argon

Vahedi et al. (1993) PSST 2 273

The plasma densities, measured in the center of the
discharge gap and those measured by Godyak et al.
Two sets of simulation results are shown, with and without
secondary electron emission due to ion impact (Yi = 0.2)

Even with secondaries, the plasma density from the
simulation is still roughly a factor of two lower



Validation: XPDP1 in argon

Vahedi et al. obtained smaller
electron density and larger electron
temperature in their simulation than
those in the measurement by roughly
a factor of two
Using larger number of
superparticles for the same number
of cells Kim et al. find the electron
density and electron temperature to
be in better agreement with those in
Godyak’s measurement under low
pressure

Kim et al. (2005) JJAP 44(4A) 1957

Godyak and Piejak (1990) PRL 65(8) 996



Validation: PHOENIX1D in argon

Similarly Lafleur et al. validated the
code PHOENIX1D against
measurements of the electron
density and energy in a capacitive
argon discharge
The densities from the simulations
are slightly lower, while the electron
energies are slightly higher than the
measured values
They used the same or larger
number of superparticles than Kim et
al.

Lafleur et al. (2014) PSST 23(3) 035010

Godyak and Piejak (1990) PRL 65(8) 996



Code-to-code Benchmark
OOPD1 vs XPDP1

comparing simulation results with results from
other codes



Code-to-code Benchmark

Another common, or the usual
approach, to verify
particle-in-cell simulation
codes and evaluate the error
affecting a simulation result is
based on performing
code-to-code comparisons

Surendra (1995) PSST 4(1) 56

Turner et al. (2013) Physics of Plasmas 20(1) 013507

Gudmundsson et al. (2013) PSST 22 035011

Turner et al. (2013) Phys. Plasmas 20(1) 013507



The oopd1 1d-3v PIC/MCC code

We use the OOPD1 (objective oriented plasma device for
one dimension) code to simulate the discharge
The OOPD1 code was originally developed at the Plasma
Theory and Simulation Group at UC Berkeley
It has 1 dimension in space and 3 velocity components for
particles (1d-3v)
The OOPD1 code is supposed to replace the widely used
XPDX1 series (XPDP1, XPDC1 and XPDS1)
It is developed to simulate various types of plasmas,
including processing discharges, accelerators and beams

Modular structure
Includes relativistic kinematics
Particles can have different weights

Gudmundsson et al. (2013) Plasma Sources Sci. Technol., 22(3) 035011

Wen et al. (2021) Plasma Sources Sci. Technol., 30(10) 105009



Code-to-code Benchmark: OOPD1 vs XPDP1

We performed a benchmark study
and compared the OOPD1 code to the
well-established planar XPDP1 code
The cross section set in XPDP1 is
limited to O+

2 , O− and electrons as
the charged particles
We compared

the electron energy distribution
function
the electron temperature profile
the density profiles of charged
particles
electron heating rates

for a 4.5 cm gap capacitive oxygen
discharge at 50 mTorr

Gudmundsson et al. (2013) PSST 22 035011



Code-to-code Benchmark: OOPD1 vs XPDP1

Gudmundsson et al. (2013) PSST 22 035011



Code-to-code Benchmark: OOPD1 vs XPDP1
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The electron energy probability function
(EEPF) is almost the same when the
XPDP1 cross sections are used
There is a slightly higher density of
low-energy electrons when the XPDP1
code is used (case 1) than when the
OOPD1 code is used
This explains the lower effective electron
temperature observed when using XPDP1

Gudmundsson et al. (2013) PSST 22 035011



Code-to-code Benchmark: OOPD1 vs XPDP1
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(c)

The density profiles for O− ions, O+
2 ions

and electrons
The negative ion profile is almost the
same for both XPDP1 and OOPD1 using
the XPDP1 cross sections
With the limited revised cross section set,
case 4, the negative ion density profile is
slightly narrower and the peak density at
the discharge center is higher

Gudmundsson et al. (2013) PSST 22 035011



Code-to-code Benchmark: OOPD1 vs XPDP1

The electron heating rate profile
The peaks near the plasma-sheath
boundaries are mainly due to pressure
heating and the electron power
absorption in the bulk is primarily due to
ohmic heating of slow electrons
The enhanced treatment of the collision
kinematics in OOPD1 leads to an increase
in the ohmic heating and decrease in the
pressure heating
The revised cross section set further
increases the ohmic heating in the bulk
plasma and decreases the pressure
heating
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Code-to-code Benchmark: OOPD1 vs XPDP1

The previous figure of the power absorption
at 50 mTorr in oxygen is incorrect
Detachment by the metastable molecule
O2(a1∆g) has a significant influence on the
discharge properties such as the
electronegativity, the effective electron
temperature and the electron power
absorption processes

Case 1 – the complete reaction set
Case 2 – detachment by O2(a1∆g)
neglected
Case 5 – no metastables, the benchmark
Case 6 – complete reaction set with
γi,see = 0.2

Gudmundsson and Lieberman (2015) PSST 24 035016



Code verification
quantifying the numerical error with respect to the exact

solution

testing the convergence of the numerical solution to the
exact solution

comparing the rate of convergence of the numerical
solution to the expected order of the numerical scheme

(order-of-accuracy tests)



Code verification

PIC codes are used to numerically solve the
Vlasov-Maxwell system of equations
The PIC algorithm represents the distribution function of
plasma species as a set of computational particles
(superparticles), whose position in the phase space is
evolved according to Newton’s laws
The forces acting on the particles are obtained by solving
the Maxwell equations, having assigned to a numerical grid
the charge and the current carried by the particles



Code verification

The model we consider is written

∂fα
∂t

+ v
∂fα
∂x

+
qαE
mα

∂fα
∂v

= 0 and
∂E
∂x

=
ρ

ε0

where fα(x , v , t) is the distribution function for the species
α, ρ is the total charge distribution and E is the electric field
In the PIC method these equations are solved numerically
performing the following steps:

At t = 0, Np superparticles are randomly distributed in the
phase space according to a distribution function f0 and a
weight wp is assigned to each particle

wp =
f (xp, vp, t = 0)

f0(xp, vp)



Code verification

The particle charge is assigned to a numerical grid with
spacing ∆x , to obtain the charge distribution at each grid
point
The Poisson equation is solved and the electric field E is
computed on the grid
E is interpolated from the grid to the particle positions, to
obtain the electric field Ep acting on each particle
The equations of motion of the computational particles

dwp

dt
= 0,

dxp

dt
= vp,

dvp

dt
=

q
m

Ep

are numerically integrated in time to t = ∆t , with ∆t being
the step of the time integration scheme

The system is advanced until the final time of the
simulation is reached



Code verification

The error associated with a statistical representation of the
distribution function is expected to decrease as

1√
Np

where Np is a measure of the number of simulation
particles
The numerical error affecting quantities such as Ep, that
result from a simulation is

ε = C1∆xb + C2∆tb + C3
1√
Np

+ higher order terms

where C1, C2 and C3 are constants
a is the order of accuracy of the spatial operators in the
interpolation between particles and grid positions
b is the order of accuracy of the time integration scheme



Code verification

To simplify the expression of the numerical error, it is useful
to introduce

p the theoretical order of accuracy of the algorithm
h representing the degree of refinement of the mesh and
time step

Then

hp =

(
∆x
∆x0

)a

+

(
∆t
∆t0

)b

+

(
N
N0

)−1/2

and consequently

εh = Cphp +O(hp+1)

Often p = a the theoretical order of accuracy of the
algorithm is taken as the order of accuracy of the spatial
discretization scheme



Code verification

For a kinetic model M solved by a PIC code, we denote its
exact solution as s

M(s) = 0

and its numerical discretization with degree of refinement h
as Mh

The numerical solution of Mh is denoted as sh

Mh(sh) = 0

The numerical error affecting the simulation results is
defined as

ε = ‖s − sh‖

where ‖·‖ denotes a designated norm
The evaluation of the numerical error εh requires that s is
known



Analytical verification solution

quantifying the numerical error with respect to the exact
solution



Analytical verification solution

There are not many true analytical solutions for kinetic
simulations due to the complexity of the Vlasov and
Boltzmann equations
One such solution is the space-charge limited (SCL)
charged particle flow through a planar diode
This solution has been used to verify several electrostatic
PIC simulation codes
The particles are assumed to be injected cold and
collisions with any background gas are neglected



Analytical verification solution

Lafleur (2020) PSST 29(6) 065002

Lafleur extended this work by deriving a complete solution
valid for any injection current from zero up until the SCL
limit Lafleur (2022) PSST 31(11) 114008

The system consists of two parallel electrodes separated
by a distance L
At the left-hand side electrode (x = 0), charged particles of
only one sign are injected and subsequently accelerated
towards the right-hand side electrode (at x = L)
The initial particle injection velocity is v0 and the injected
current density is J0



Analytical verification solution

The analytical equations in Tables 1
and 2 serve as useful verification
solutions to demonstrate the
correctness and accuracy of numerical
simulations, such as PIC codes
The parameter

β =

√
−

mv2
0

2qφL

effectively represents the initial particle
energy relative to the total accelerating
potential

Lafleur (2022) PSST 31(11) 114008



Analytical verification solution

Spatial profiles of the potential (left column) and density
(right column) for verification cases with β = 0.1
The solid blue curves show the theoretical results, the
open red circles the PIC simulation results, and the open
green squares the fluid simulation results
The dashed black lines show theoretical results at injection
current densities equal to zero and at the SCL limit
respectively

Lafleur (2022) PSST 31(11) 114008



Analytical verification solution

Spatial profiles of the potential (left column) and density
(right column) for verification cases with β = 1
The solid blue curves show the theoretical results, the
open red circles the PIC simulation results, and the open
green squares the fluid simulation results
The dashed black lines show theoretical results at injection
current densities equal to zero and at the SCL limit
respectively

Lafleur (2022) PSST 31(11) 114008



Analytical verification solution

The numerical errors can be explicitly quantified
Recall that

ε = C1∆xb + C2∆tb + C3
1√
Np

and εh = Cphp

where

hp =

(
∆x
∆x0

)a

+

(
∆t
∆t0

)b

+

(
Np

N0

)−1/2

By simultaneously refining the numerical parameters ∆x ,
∆t and Np, an overall convergence rate of order p can in
principle be obtained



Analytical verification solution

In the PIC simulations, the leap-frog time integration
scheme is second-order so that b = 2
Similarly, the electrostatic field solver is second-order in
space while linear weighting is used for
particle-grid/grid-particle interpolation, so a = 2
For a target convergence rate of order p = 2

h =

(
∆x
∆x0

)
+

(
∆t
∆t0

)
+

(
Np

N0

)−1/4

Halving the refinement parameter doubles the number of
time steps, but the number of particles required increases
by a factor of 16



Analytical verification solution

The error is
ε =
‖zsim − ztheo‖2
‖ztheo‖2

and z is certain spatial quantity and

‖z‖2 =

√√√√ N∑
i=1

z2
i

As the refinement parameter is reduced the solution
converges and the error continuously decreases



Method of manufactured
solutions (MMS)



Method of manufactured solutions (MMS)

There are not many true analytical solutions for kinetic
simulations due to the complexity of the Vlasov and
Boltzmann equations – the solution s is unknown in most
cases
The MMS was developed to overcome this issue
Instead of solving M analytically, an arbitrary function sM is
imposed as a solution to the model (the manufactured
solution)
The model equations are modified to accommodate the
imposed solution; the modified model is then solved
numerically to compute the numerical error
For a given model M, we choose an analytical function sM
and compute a source term, S = M(sM), which is
subsequently subtracted from M to obtain a new analytical
model G

G = M − S



Method of manufactured solutions (MMS)

The analytical solution of G is sM

G(sM) = M(sM)− S = 0

and
Gh = Mh − S = 0

which can be solved numerically to obtain sM,h

Since the source term S is computed analytically, we do
not add any new source of numerical error to the original
numerical model, and the numerical error

εh = ‖sM − sM,h‖

satisfies
εh = C′hp +O(hp+1)

where C′ is a constant independent of h



Method of manufactured solutions (MMS)

The manufactured solution should satisfy the following
requirements

be sufficiently smooth and not singular
satisfy the code constraints (e.g., f ≥ 0 and f → 0 for
v → ±∞
be general enough to excite all terms present in the
equations
ensure that the different terms composing the equations
are of the same order of magnitude so that no term
dominates the others

The manufactured solutions are usually built as a
combination of trigonometric and/or hyperbolic functions

Riva et al. (2017) Physics of Plasmas, 24(5) 055703

Tranquilli et al. (2022) Journal of Computational Physics, 448 110751



Method of manufactured solutions (MMS)

Verification using the method of manufactured solutions is
based on solving numerically a new, arranged system that
is related to the original system, and for which we know the
exact solution
Verification is performed via the comparison of a
theoretical convergence rate to the exact solution with an
empirically measured convergence rate
If these convergence rates match, then we know both that
the implemented numerical process is converging to the
correct solution and that it matches the intended
underlying algorithm



Method of manufactured solutions (MMS)

The new system of equations to be solved is simply the
previous Vlasov-Poisson equation with the addition of a
specific forcing term

Sf (x , v , t) =
∂fM
∂t

+ v
∂fM
∂x

+
qEM

m
∂fM
∂v

and
SE (x , t) =

∂EM

∂x
− ρ

ε0

with SE = 0 if EM is consistent with fM
Here fM and EM are the desired manufactured solution,
and solve exactly the modified system



Method of manufactured solutions (MMS)

The addition of a source term in the Vlasov equation
requires a small modification to the particle-in-cell
procedure – the equation of motion for the particle weight
now has a nonzero right-hand side

dwp

dt
=

Sf (xp(t), vp(t), t)
f0(xp(0), vp(0))

The task is then to compute the numerical error affecting
the simulation results
For the electric field it involves finding the difference
between the numerical and the manufactured solution as

ε(Ep) = max
t

max
p=1,...,N

|Ep(t)− EM(xp(t), t))|



Method of manufactured solutions (MMS)

To quantify the numerical error affecting fM requires
measurement of the distance between a continuous
analytical distribution function and a set of Np
computational particles
The evaluation of εp(fM) is computationally expensive for a
data set with a large number of elements
Challenges associated with comparing simulation results,
which consist of discrete particle distributions, with the
continuous analytical distributions of the manufactured
solution – computationally expensive



Method of manufactured solutions (MMS)

Note that deriving the manufactured solution typically
requires the underlying equations and physical model to be
modified

the introduction of additional source terms
new differential equations (such as an equation for the
evolution of the particle weight)

This may mean changes to the simulation code which
creates an addition burden on the simulator, and can
introduce new errors
The manufactured solutions typically describe artificial or
physically unobtainable systems, and therfore may provide
limited insight into any actual underlying physics

Lafleur (2022) PSST 31(11) 114008



Validation: OOPD1 in argon

Including metastable states and surface effects



Pressure dependence
– no surface effects



Pressure dependence

The ionization rate profiles at
50 mTorr (upper)
1.6 Torr (lower)
rf current source at 50 A/m2

The results show varying
completeness of the discharge model
The blue line indicates simulations
where the metastable Arm, the
radiative Arr, and the Ar(4p) manifold
are included and modeled as time-
and space-evolving fluid species
Without excited species there is no
ionization in the bulk

Wen et al. (2021) PSST 30 105009



Pressure dependence

The time averaged ion density profile
for various pressures calculated

without excited state atoms (upper)
including excited state atoms treated
as a fluid (lower)
rf current source at 50 A/m2 and
13.56 MHz

The metastable Arm, the radiative Arr,
and the Ar(4p) manifold are included
and modeled as time- and
space-evolving fluid species
It is found that the presence of the
excited species influences the density
profile and enhances the plasma
density by a factor of 3 at 1.6 Torr

Wen et al. (2022) IEEE TPS 50(9) 2548



Pressure dependence

Wen et al. (2021) PSST 30 105009

Percentage (ηj ) of the total reaction rate of each reaction j
versus background pressure pg
Ionization

R8: e− + Ar→ 2e− + Ar+ dominates at low pressure
R22: Arm + Arm → e− + Ar+ + Ar – Penning ionization and
R19: e− + Arm → e− + Ar+ + Ar – step wise ionization take
over at higher pressure



Surface effects – secondary
electron emission



Surface effects

Gudmundsson et al. (2021) PSST 30 125011
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Due to bombardment of neutrals in the ground state
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Secondary electron emission

Secondary electron emission due to
Electron bombardment of the
electrodes

Using the modified Vaughan
method as described by Wen et al.
(2023)

Photon bombardment of the
electrodes
The resonance radiation of Arr is
partially imprisoned at low pressure,
and the fraction of the radiation
escaping depends on the specific
gas pressure and electrode spacing
We use the Walsh model to calculate
the escape factor g
For a photon energy of 11.62 eV, the
resonant photon-induced secondary
electron emission coefficient is set to
0.075

Wen et al. (2023) PSST 32 064001



Secondary electron emission

Wen et al. (2023) PSST 32 064001

The figures show the electron density versus gas pressure
for three driving voltage amplitudes
The figures show the PIC/MCC simulation results for
varying completness of the surface processes
The black dotted lines the experimental measurements of
the plasma density at the discharge center by Schulenberg
et al. Schulenberg et al. (2021) PSST 30(10) 105003



Summary



Summary

The particle-in-cell Monte Carlo collsion simulations are a
very important tool to explore processes in
low-temperature plasma discharges
An overview of verifaction methods for 1D particle-in-cell
Monte Carlo collision simulation codes
This includes

Verification: A comparison of simulations and analytical
solutions to test the intrinsic consistency of a model
Validation: A comparison of simulations with experimental
results or observations
Benchmarking: A comparison of two or more models
under the same conditions, but with different numerical
implementations or on different scales (like particle or fluid
models)

We looked at code verification using analytical verification
solution and the method of manufactured solutions (MMS)



Thank you for your attention
tumi@hi.is

The slides can be downloaded at
http://langmuir.raunvis.hi.is/∼tumi/ranns.html
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