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Introduction

• The oopd1 particle-in-cell Monte Carlo (PIC-MC) code is used to sim-
ulate a capacitively coupled discharge in oxygen

• oopd1 is a one-dimensional object-oriented PIC-MC code in which the
model system has one spatial dimension and three velocity components

• It contains models for planar, cylindrical, and spherical geometries and
replaces the XPDx1 series

• The oxygen discharge is of vital importance in various materials pro-
cessing applications such as ashing of photoresist, etching of polymer
films and oxidation and deposition of thin film oxides

• The oxygen chemistry is rather involved, in particular due to the pres-
ence of metastable molecular oxygen

• Global model studies indicate that at low pressure (≤ 10 mTorr) and
in particular at higher absorbed power the discharge is highly disso-
ciated and oxygen atoms dominate the discharge and the O+-ion is
the dominating charged particle (Gudmundsson and Lieberman, 1998;
Gudmundsson et al., 2001)

• Electron impact detachment and ion-ion neutralization dominate the
loss of negative ions at low pressure, while detachment by oxygen atoms
dominates at higher pressures (≥ 20 mTorr)

The oxygen reaction set

• The revised oxygen model includes, in addition to electrons, the oxy-
gen molecule in ground state, the oxygen atom in ground state, the
negative ion O−, and the positive ions O+ and O+

2

• For comparison we define a limited reaction set that includes only, in
addition to electrons, the oxygen molecule in ground state, the negative
ion O−, and the positive ion O+

2

• The cross sections for the collisions among the oxygen species have been
significantly revised from earlier work using the XPDP1 code (Vahedi
and Surendra, 1995)

• We assume the oxygen molecules are reflected from the electrodes and
that the oxygen atoms recombine to form O2 at the electrodes with a
50 % probability and are reflected with a 50 % probability

Results and discussion

0 10 20 30 40 50
10

−4

10
−3

10
−2

10
−1

E [eV]

E
E

P
F

 

 

limited reaction set
full reaction set

Figure 1: The electron energy probability function (EEPF) for an
oxygen discharge at 2 mTorr. The EEPF is calculated assuming a
full reaction set (red line) and a limited reaction set (blue line).

• We assume a parallel plate capacitively coupled oxygen discharge with
with a gap separation of 5 cm and cross sectional area of 20 cm2

• The discharge is driven by a 500 V voltage source at 13.56 MHz

electron impact O2

e + O2 −→ O2 + e elastic scattering l
e + O2(r = 0) −→ e + O2(r > 0) rotational excitation l
e + O2(v = 0) −→ e + O2(v > 0) vibrational excitation l
e + O2 −→ e + O2(a

1∆g) metastable excitation (0.98 V) l
e + O2 −→ e + O2(b

1Σ+
g ) metastable excitation (1.63 V) l

e + O2 −→ e + O2(A
3Σ+

u , A′3∆u, c
1Σ−

u ) metastable excitation (4.05 V) l
e + O2 −→ O(3P) + O(3P) + e dissociation (6.12 V) l
e + O2 −→ O(3P) + O(1D) + e dissociation (8.4 V) l
e + O2 −→ O(1D) + O(1D) + e dissociation (9.97 V) l
e + O2 −→ O+

2
+ 2e electron impact ionization l

e + O2 −→ e + O + O(3p3P) dissociative excitation (14.7 V) l
e + O2 −→ O + O− dissociative attachment l
e + O2 −→ O+ + O− + e polar dissociation l
e + O2 −→ O+ + O + 2e dissociative ionization l

electron impact O

e + O −→ O + e elastic scattering
e + O(3P) −→ O(1D) + e excitation to 1D (1.96 eV)
e + O(3P) −→ O(1S) + e excitation to 1S (4.18 eV)
e + O(3P) −→ O(3P0) + e excitation to 3P0 (15.65 eV)
e + O(3P) −→ O(5S0) + e excitation to 5S0 (9.14 eV)
e + O(3P) −→ O(3S0) + e excitation to 3S0 (9.51 eV)
e + O −→ O+ + 2e ionization

detachment

e + O− −→ O + 2e electron impact detachment l
O− + O2 −→ O + O2 +e detachment by oxygen molecule l
O− + O −→ O2 + e detachment by oxygen atom

recombination

e + O+

2
−→ O(3P) + O(1D) dissociative recombination l

O− + O+

2
−→ O + O2 mutual neutralization l

O+ + O− −→ O + O mutual neutralization

charge exchange

O+

2
+ O2 −→ O2 + O+

2
charge exchange l

O+ + O2 −→ O + O+

2
charge exchange

O+ + O −→ O + O+ charge exchange
O+

2
+ O −→ O2 + O+ charge exchange

O+

2
+ O2 −→ O+ + O + O2 fragmentation by energetic O+

2
l

scattering

O− + O2 −→ O− + O2 scattering
O + O2 −→ O + O2 scattering l
O+

2
+ O2 −→ O+

2
+ O2 scattering l

O+ + O2 −→ O+ + O2 scattering

l reaction included in the limited reaction set
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Figure 2: The ion energy distribution for the oxygen ion O+
2 cal-

culated assuming a full reaction set (red line) and limited reaction
set (blue line) for oxygen discharge at 2 mTorr.

• The ion energy distribution for the oxygen ion O+
2 at 20 mTorr shows

distinct peaks that are caused by charge-exchange collisions in the
sheath with targets mainly having thermal energies

• This is consistent with what has been observed experimentally (Janes
and Huth, 1992a) and demonstrated by PIC-MC simulations (Babaeva
et al., 2005)

• There are clear differences in the fine structure when comparing results
from calculations assuming a full reaction set and a limited reaction
set

0 50 100 150 200 250

0

2

4

6

8

10

12

14

16

E [eV]

C
o

u
n

ts
 [

A
.U

.]

(a)

0 50 100 150 200 250

0

1

2

3

4

5

6

7

8

9

E [eV]

C
o

u
n

ts
 [
A

.U
.]

(b)

Figure 3: The ion energy distribution for the oxygen ion O+ (a)
at 2 mTorr and (b) 20 mTorr, calculated assuming a full reaction
set.

• The ion energy distribution for the oxygen ion O+ is broad and con-
tinuous

• A broad ion energy distribution for the oxygen ion O+ has been ob-
served experimentally by Janes and Huth (1992b) which suggested that
it is due to mechanisms that are not dominated by charge-exchange
collisions

Conclusions

• A new PIC-MC code, the oopd1, was applied to explore a capacitively
coupled oxygen discharge

• The code was used to determine the electron energy distribution and
the ion energy distribution for both O+ and O+

2 -ions
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