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Introduction

• Ultra thin platinum films were grown by dc magnetron sput-
tering on thermally oxidized Si (100) substrates.

• The electrical resistance of the films was monitored during
growth in-situ.
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Figure 1: The dual lock–in amplifier setup used to mea-
sure the electrical resistance of the growing films in–situ.
The setup is a standard four point probe measurement.

Experimental procedure

• The Pt thin films were grown in a custom built magnetron sput-
tering chamber. A turbo molecular pump was used to evacuate
the system to 1 × 10−8 Torr. The sputtering gas was argon of
99.999% purity and pressure 0.4 mTorr. The Pt target was 50
mm in diameter and of 99.99% purity.

• The crystallographic grain size was determined using X-ray
diffractometry and the Scherrer equation.

• The morphological grain size and surface roughness were mea-
sured ex-situ with a scanning tunneling microscope (STM)
with an etched tungsten tip (Arnalds et al., 2003).

• The substrate holder is made from Macor ceramics to electri-
cally isolate the four probe tips from each other and from the
sample stage.

• The electrical resistance of the growing film was measured with
a simplified version of the dual lock-in amplifier setup described
by Barnat et al. (2003).

Results and discussion
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Figure 2: The resistance, R, as a function of Pt film thick-
ness, d, measured in–situ during growth, for three different
growth temperatures.

• The coalescence threshold is 1.3 nm, 1.6 nm, and 1.8 nm for
the films grown at 27, 100 and 250◦C, respectively.

• In comparison, Maaroof and Evans (1994) find the minimum
coalescence thickness to be 0.83 nm, 0.67 nm, and 0.61 nm for
films grown at 27, 100, and 200◦C, respectively, using ion–beam
sputtering.

• The minimum of the calculated value Rd2, where R is the
in–situ resistance and d the deposited film nominal thickness,
gives the minimum thickness of a continuous film (Rycroft and
Evans, 1996; Maaroof and Evans, 1994). This occurs at 3.9 nm,
3.4 nm, and 3.5 nm for the films grown at 27, 100, and 250◦C,
respectively.

• In comparison, Maaroof and Evans (1994) find the minimum
thickness of Pt films which completely cover the substrate to
be 2.30 nm for films grown at 27 – 200◦C and 0.35 nm for films
grown at 300◦C.

• As each film becomes thicker, its resistance decreases until the
room temperature resistivity reaches values close to 2.5 × ρ0,
4.8×ρ0, and 8.2×ρ0 for the films grown at 27, 100, and 250◦C,
respectively. The bulk resistivity of Pt is ρ0 = 10.6 µΩ cm.

• Four films were grown at room temperature to different thick-
nesses. Immediately after growth the samples were heated
from room temperature up to approximately 450◦C at a rate
of 1◦C/min while their resistance was monitored.
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Figure 3: The normalized film resistance R/RRT versus
temperature for a film grown at room temperature. The
symbols correspond to the symbols marking thickness and
resistance shown in figure 3.

• The morphological grain size of 85 nm thick films was evalu-
ated to be 21, 24 and 52 nm, for the films grown at 27, 100,
and 250◦C, respectively.

• The RMS surface roughness was estimated 1.6, 1.8, and 2.7
nm, for the films grown at 27, 100, and 250◦C, respectively.

• The crystallographical grain size for 85 nm thick films was de-
termined 30, 33 and 40 nm for the films grown at 27, 100, and
250◦C, respectively.

Conclusions

• The morphological grain size and the crystallographical grain
size increase with increased growth temperature, which should
result in lower electrical resistivity.

• Higher growth temperature leads to increased film resistivity.
This could be partially related to increased surface roughness
with increased growth temperature.
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Figure 4: STM images of the surface of 85 nm thick Pt
films grown on SiO2 at (a) 27◦C, (b) 100◦C, and (c) 250◦C,
respectively.
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