

Electrical resistivity and morphology of ultra thin Pt films grown by dc magnetron sputtering on SiO_2

J S Agustsson¹, U B Arnalds², A S Ingason³, K B Gylfason⁴, K Johnsen¹, S Olafsson³ and J T Gudmundsson^{3,5,*}

 ¹ Mentis Cura ehf, Grandagardi 7, Reykjavik, Iceland
² Matvice ehf, Dunhaga 3, Reykjavik, Iceland
³ Science Institute, University of Iceland, Reykjavik, Iceland
⁴ Microsystem Technology Laboratory, School of Electrical Engineering, KTH-Royal Institute of Technology, Stockholm, Sweden
⁵ Department of Electrical and Computer Engineering, University of Iceland, Reykjavik, Iceland
*tumi@hi.is

Introduction

- Ultra thin platinum films were grown by dc magnetron sputtering on thermally oxidized Si (100) substrates.
- \bullet The electrical resistance of the films was monitored during growth $in\math{\textit{-situ}}.$

Figure 1: The dual lock–in amplifier setup used to measure the electrical resistance of the growing films *in–situ*. The setup is a standard four point probe measurement.

- The coalescence threshold is 1.3 nm, 1.6 nm, and 1.8 nm for the films grown at 27, 100 and 250°C, respectively.
- In comparison, Maaroof and Evans (1994) find the minimum coalescence thickness to be 0.83 nm, 0.67 nm, and 0.61 nm for films grown at 27, 100, and 200°C, respectively, using ion-beam sputtering.
- The minimum of the calculated value Rd^2 , where R is the in-situ resistance and d the deposited film nominal thickness, gives the minimum thickness of a continuous film (Rycroft and Evans, 1996; Maaroof and Evans, 1994). This occurs at 3.9 nm, 3.4 nm, and 3.5 nm for the films grown at 27, 100, and 250°C, respectively.
- In comparison, Maaroof and Evans (1994) find the minimum thickness of Pt films which completely cover the substrate to be 2.30 nm for films grown at 27 200°C and 0.35 nm for films grown at 300°C.
- As each film becomes thicker, its resistance decreases until the room temperature resistivity reaches values close to $2.5 \times \rho_0$, $4.8 \times \rho_0$, and $8.2 \times \rho_0$ for the films grown at 27, 100, and 250°C, respectively. The bulk resistivity of Pt is $\rho_0 = 10.6 \ \mu\Omega$ cm.
- Four films were grown at room temperature to different thicknesses. Immediately after growth the samples were heated from room temperature up to approximately 450°C at a rate of 1°C/min while their resistance was monitored.

Experimental procedure

- The Pt thin films were grown in a custom built magnetron sputtering chamber. A turbo molecular pump was used to evacuate the system to 1×10^{-8} Torr. The sputtering gas was argon of 99.999% purity and pressure 0.4 mTorr. The Pt target was 50 mm in diameter and of 99.99% purity.
- The crystallographic grain size was determined using X-ray diffractometry and the Scherrer equation.
- The morphological grain size and surface roughness were measured *ex-situ* with a scanning tunneling microscope (STM) with an etched tungsten tip (Arnalds et al., 2003).
- The substrate holder is made from Macor ceramics to electrically isolate the four probe tips from each other and from the sample stage.
- The electrical resistance of the growing film was measured with a simplified version of the dual lock-in amplifier setup described by Barnat et al. (2003).

Results and discussion

Figure 3: The normalized film resistance $R/R_{\rm RT}$ versus temperature for a film grown at room temperature. The symbols correspond to the symbols marking thickness and resistance shown in figure 3.

- The morphological grain size of 85 nm thick films was evaluated to be 21, 24 and 52 nm, for the films grown at 27, 100, and 250°C, respectively.
- The RMS surface roughness was estimated 1.6, 1.8, and 2.7 nm, for the films grown at 27, 100, and 250°C, respectively.
- The crystallographical grain size for 85 nm thick films was determined 30, 33 and 40 nm for the films grown at 27, 100, and

Figure 4: STM images of the surface of 85 nm thick Pt films grown on SiO₂ at (a) 27°C, (b) 100°C, and (c) 250°C, respectively.

Figure 2: The resistance, R, as a function of Pt film thickness, d, measured in-situ during growth, for three different growth temperatures.

250° C, respectively.

Conclusions

- The morphological grain size and the crystallographical grain size increase with increased growth temperature, which should result in lower electrical resistivity.
- Higher growth temperature leads to increased film resistivity. This could be partially related to increased surface roughness with increased growth temperature.

Acknowledgments

This work was partially supported by the Icelandic Research Fund, the Steinmaur Foundation and the University of Iceland Research Fund.

References

- Arnalds U. B, Bjarnason E. H, Jonsson K, Olafsson S (2003). An externally cooled beetle type scanning tunneling microscope for imaging in cryogenic liquids. *Applied Surface Sci*ence 252(15), 5485–5488.
- Barnat, E. V., D. Nagakura, and T.-M. Lu (2003). Real time technique to measure the electrical resistivity of ultrathin films during growth in plasma environments. *Review of Scientific Instruments* 74(7), 3385–3389.
- Maaroof, A. I. and B. L. Evans (1994). Onset of electrical conduction in Pt and Ni films. Journal of Applied Physics 76(2), 1047 1054.
- Rycroft, I. M. and B. L. Evans (1996). The in situ characterization of metal film resistance during deposition. *Thin Solid Films 290-291*, 283–288.