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Introduction

~

e The demand for new materials and layer structures has lead to

development of more advanced sputtering systems

e One such sputtering system is the high power pulsed
magnetron sputtering discharge (HPPMS) or high power
impulse magnetron sputtering discharge (HiPIMS)

e It gives high electron density and highly ionized flux of the

sputtered material
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Introduction

-

e Magnetron sputtering discharges are widely used in thin film
processing
e Applications include
— thin films in integrated circuits
— magnetic material
— hard, protective, and wear resistant coatings
— optical coatings
— decorative coatings

— low friction films
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Introduction

e Introduction to magnetron sputtering
e Introduction to Ionized Physical Vapor Deposition (IPVD)

e High power impulse magnetron sputtering discharge (HiPIMS)
— Power supply

— Electron density

Plasma dynamics

Tonization fraction

— Deposition rate

Applications
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Introduction

e This work is a result of collaboration with
— Kristinn B. Gylfason (University of Iceland)
— Dr. Jones Alami (Linkoping University, Sweden)

Johan Bohlmark (Linkoping University, Sweden)
— Dr. Arutiun Ehiasarian (Sheffield Hallam University, UK)
— Prof. Ulf Helmersson (Linkoping University, Sweden)

Dr. Martina Latteman (Linkoping University, Sweden)

-

/

-~

Planar Magnetron Sputtering Discharge

e Conventional magnetron sputtering processes suffer from

fundamental problems such as

— low target utilisation

— target poisoning

— poor deposition rates for dielectric and ferromagnetic
materials

— target thermal load limits the available current

— electrical instabilities or arcs cause process instability

— low fraction of the sputtered material is ionized
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Planar Magnetron Sputtering Discharge
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e A typical dc planar magnetron discharge operates at a pressure
of 1 — 10 mTorr with a magnetic field strength of 0.01 — 0.05 T
and at cathode potentials 300 — 700 V

e Electron density in the substrate vicinity is in the range
1015 _ 1016 m—3
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/Ionized Physical Vapour Deposition \
(IPVD)

e When the flux of ions is higher than the flux of neutrals or
'y > T’} the process is referred to as ionized physical vapour
deposition (IPVD)

e This is achieved by
— increased power to the cathode (high power pulse)

— a secondary discharge between the target and the substrate

(rf coil or microwaves)

— reshaping the geometry of the cathode to get more focused

plasma (hollow cathodes)

e Common to all highly ionized techniques is very high density

\ plasma /
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Ionized Physical Vapour Deposition
(IPVD)
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e The development of ionized physical vapour deposition (IPVD)
devices was mainly driven by the need to deposit metal layers
and diffusion barriers into trenches or vias of high aspect ratios

e Tonizing the sputtered vapour has several advantages:

— improvement of the film quality
— control of the reactivity

— deposition on substrates with complex shapes and high
aspect ratio
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HiPIMS

e In a conventional dc magnetron discharge the power density is
limited by the thermal load on the target

e Most of the ion bombarding energy is transformed into heat at
the target

e In unipolar pulsing the power supply is at low (or zero) power
and then a high power pulse is supplied for a short period

e The high power pulsed magnetron sputtering discharge uses
the same sputtering apparatus except the power supply
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e In order to generate highly ionized discharge a radio-frequency
discharge can be added in the region between the cathode and
the anode

e The metal ions can then be accelerated to the substrate by

/

11

\ means of a low voltage dc bias
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HiPIMS - Power supply
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e The high power pulsed discharge operates with a
— Cathode voltage in the range of 500-2000 V
Current densities of 3-4 A/cm?

Power densities in the range of 1-3 kW /cm?
— Frequency in the range of 50 — 500 Hz

Duty cycle in the range of 0.5 — 5 %
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HiPIMS - Power supply
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0.5 mTorr (solid line), 2 mTorr (dashed line) and 20 mTorr (dot dashed line)
(After Gudmundsson et al. (2002))

e The exact pulse shape is determined by the load
— the discharge formed

— it depends on the gas type and gas pressure
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/HiPIMS - Electron density \

1020

1019

T [
E 108 ¢

o
IS

1017

1016 |||||
200 400 600 800 1000

t s

o

(From Gudmundsson et al. (2002))

e The electron density versus time from the initiation of the
pulse 9 cm below the target

Ko The pulse is 100 us long and the average power 300 W /
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/HiPIMS - Electron density \
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(From Bohlmark et al. (2005b))

e Temporal and spatial variation of the electron density

K. Argon discharge at 20 mTorr with a titanium target J
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/HiPIMS - Plasma dynamics \
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(From Gylfason et al. (2005))

e The electron saturation current as a function of time from

pulse initiation

e The argon pressure was 5 mTorr, the target was made of

\ titanium, and the pulse energy 6 J J
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HiPIMS - Plasma dynamics
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(From Gylfason et al. (2005))
e Each peak travels with a fixed velocity through the chamber

e The peaks travel with a velocity of 5.3 x 10> m/s at 1 mTorr,

1.7 x 10® m/s at 5 mTorr, and 9.8 x 102 m/s at 20 mTorr
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HiPIMS - Deposition rate

e Several groups report on a significantly lower deposition rate
for HIPIMS as compared to dcMS

a factor of 2 lower deposition rate for Cu and T1i thin films
(Bugaev et al., 1996)

a factor of 4 — 7 lower deposition rate for reactive sputtering
of TiO2 from a Ti target (Davis et al., 2004)

— a factor of 3 - 4 lower deposition rate for reactive sputtering
of AlO, from an Al target (Sproul et al., 2004)

the reduction in deposition rate decreases with decreased
magnetic confinement (weaker magnetic field) (Bugaev
et al., 1996)

. /
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HiPIMS - Ionization fraction

e There have been conflicting reports on the ionized flux fraction
— 70 % for Cu (Kouznetsov et al., 1999)
— 40 % for Tip5Alp5 (Macék et al., 2000)

9.5 % for Al (DeKoven et al., 2003)

— 4.5 % for C (DeKoven et al., 2003)

e The degree of ionization

— 90 % for Ti (Bohlmark et al., 2005a)

- J
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HiPIMS - Deposition rate

e One explanation is that the sputtered material is ionized close
to the target and many of the metallic ions will be attracted
back to the target surface by the cathode potential

e A reduction in the deposition rate would occur mainly for
metals with a low self-sputtering yield

e Maybe this can be reduced by optimised magnetic confinement

N /
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Application - Trench filling
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e Ta thin films grown on Si substrates placed along a wall of a 2

cm deep and 1 cm wide trench
— conventional dc magnetron sputtering (dcMS)

— high power impulse magnetron sputtering (HiPIMS)
o Average power is the same 440 W

e They were compared by scanning electron microscope (SEM)

/

transmission electron microscope (TEM), and Atomic Force
Microscope (AFM)
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Other applications

e The advantage of high power pulsed magnetron discharge for

film growth has been demonstrated by several groups

— ultra-thin carbon films grown by HIPIMS have significantly
higher densities (2.7 g/cm?), than films grown by a
conventional dcMS discharge (< 2.0 g/cm?) Furthermore,

the surface roughness is lower (DeKoven et al., 2003)

— TiO5 thin films grown by reactive sputtering by HIPIMS
have higher index of refraction than grown by dcMS
discharge - maybe due to higher density (Davis et al., 2004)

e This illustrates how the bombarding ions transfer momentum

to the surface allowing the microstructure to be modified

/Application - Trench filling \

(From Alami et al. (2005))

e dcMS grown films exhibit rough surface, pores between grains

and inclined columnar structure, leaning toward the aperture

e Ta films grown by HiPIMS have smooth surface, and dense

. /
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\ crystalline structure with grains perpendicular to the substraty
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/Summary \

e We reviewed the physics of the high power impulse magnetron
sputtering discharge (HIPIMS)

— Power supply
— Electron density
— Plasma dynamics
— lonization fraction
— Deposition rate
e We demonstrated the use of a high power pulsed magnetron
sputtering discharge
— for trench filling

e A brief review has been submitted by Helmersson et al.

\ (2005a,b) J
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