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Introduction

• The growth of ultra-thin lattice matched Cr0.7Mo0.3 films on an MgO
substrate, in a dc magnetron discharge, was investigated by in-situ

resistivity measurements.

• We compare the resistivity of the films to a combination of the Fuchs-
Sondheimer and the Maydas-Shatzkes model, assuming a thickness
dependence of the grain size.

• Ultra-thin metallic conducting layers are used in nanoscale electronics
as interconnects and diffusion barriers (Steinhoegl et al., 2005).

• The resistance of the signal pathway determines the operating fre-
quency and/or sensitivity of the devices.

• As the thickness of the conductor approaches the mean free path of the
conduction electrons λbulk, size effects start limiting the conductivity.

• Fuchs and Sondheimer (1952) showed that scattering of the conduction
electrons, at the surface of the film, causes loss of conductivity. The
scattering is characterized by a specularity parameter p, which repre-
sents the fraction of conduction electrons specularly scattered at the
interface.

• If the thickness of the film is further reduced, the effects of inter-
face roughness and grain boundaries lower the conductivity even more
rapidly. Grain boundary effects have been studied by Mayadas and
Shatzkes (1970).

• By choosing a film material, with a compatible crystal structure and
lattice constant to that of the substrate, the odds of achieving layer by
layer growth are increased.

• Chambers et al. (1995) suggested using an MgO substrate and a
CrxMo1−x alloy as film material, thereby achieving a better than 99%
lattice match, for x in the range 0.56 to 0.80.

• In-situ measurements make it practical to vary growth parameters and
optimize processes based on the resulting resistivity curves. Further-
more, the study of transient behavior of films after growth is possible
(Barnat et al., 2002).

Experimental procedure

Figure 1: The four-point measurement setup is mounted on the
sample loading fork. Leads are made from Macor insulated tungsten
wire, that can withstand the growth temperature.

• Films of Cr0.7Mo0.3 alloy were grown on an MgO (100) substrate, at
temperatures of 24◦C, 200◦C, and 400◦C, in a direct current (dc) mag-
netron sputtering discharge.

• Contact pads of thickness > 200 nm were grown from Cr0.7Mo0.3,
leaving a square of (5×5) mm uncoated MgO in the middle of the
sample.

• The substrate was electrically insulated from the chamber.
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Figure 2: A schematic drawing of the in-situ measuring circuit.

• The resistance of the growing film was measured with a simplified
version of the setup described by Barnat et al. (2003), suitable for
measurements without a substrate bias.

• The lock-in technique eliminates any currents extracted from the
plasma, which would otherwise erroneously lower the measured film
resistance.

• The four-point method eliminates the effect of contact resistance.

• The voltage, over the film, is measured directly and the current, pass-
ing through the film, indirectly, by monitoring the voltage over a 50 Ω
resistor, in series with the film.

• A function generator supplies a 600 mV RMS sinusoidal signal at
417 Hz.

Figure 3: The sub-
strate holder is made
from Macor to insulate
the four contacts.

• The signal was transmitted with a Cap-
ton insulated copper wire, except the last
10 cm, that were made from Macor insu-
lated tungsten wire, which can withstand
the 700◦C outgassing temperature.

• The substrate holder is made from Macor
to electrically insulate the four probe tips.

• The probes and connectors are shielded
from the flux of sputtered particles with a
thin mask of Macor, confining the growth
to the rectangular exposed area of the
substrate.

• The alloy composition was controlled by regulating the current to the
magnetron targets.

• The composition was found with Vegard’s law from the lattice constant
of the CrMo peak at ' 62.5◦ in the θ–2θ X-ray diffraction (XRD) scan
of the films.

• Growth rate was found with low angle X-ray reflection measurements.

Results and discussion
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Figure 4: The electrical resistivity ρ, normalized by the bulk re-
sistivity ρ0, as a function of thickness of Cr0.7Mo0.3 films, grown at
three different substrate temperatures. The results are compared to
the Fuchs-Sondheimer model (F-S, dashed line), and to a combined
F-S and Maydas-Shatzkes model (F-S + M-S, solid line), assuming
a thickness dependent grain size.

• The coalescence thickness varies from less than 0.3 nm at 24◦C and
200◦C to 0.4 nm at 400◦C, well below 2 monolayer nominal film thick-
ness, suggesting layer by layer growth.

• Both the 24◦C and the 200◦C film show a kink between 3 and 4 nm.

• The Fuchs-Sondheimer model can not explain the observed conduc-
tivity, even assuming fully diffuse scattering (p = 0), since both the
absolute resistivity and the increase in resistivity are too low.

• Mayadas and Shatzkes (1970) (M-S) showed that grains contribute a
resistivity ρg according to
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where G is the average grain diameter and R represents the probability
that electrons are reflected at the grain boundary.

• Following Barnat et al. (2002), we assume a grain size that follows a
modified power law of the film thickness d

G(d) = G1d
n
− G2e

d
δ (2)

where G1, G2 and δ are dimensional scaling constants and n is an
exponent dictating how the grain size scales with thickness.
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Figure 5: The grain size models used to fit the resistivity of the
films in Fig. 4 to the combined F-S and M-S model.

• Above 2 nm the grain model curves order themselves according to
temperature, with grain sizes of 2, 3, and 7 nm at 10 nm.

• At the lower temperatures, the metal particles landing on the surface
have a lower surface mobility and thus the ordering of the growing layer
is determined by the substrate.

• This results in a smooth epitaxial layer, as indicated by a low coales-
cence thickness, but a small grain size because of the strain.

• At a critical thickness (the kink in resistivity at 3 nm) the films relax to
accommodate the increasing strain energy and growth proceeds with
higher crystalline order resulting in a downwards step in resistivity.

• At higher temperatures, the sputtered particles have a higher surface
mobility and are thus more free to cluster on the surface.

• This leads to a slower reduction of resistivity, but a larger grain size,
and thus a lower resistivity than of the low temperature films above
2 nm.

Conclusions

• The resistivity of thin Cr0.7Mo0.3 films, deposited by magnetron sput-
tering on MgO, was examined in-situ at three different growth tem-
peratures.

• A coalescence thickness of less than two monolayers suggests layer by
layer growth of the films. The films grown at 24◦C and 200◦C coalesced
at a lower thickness than that of the film grown at 400◦C.

• The thickness dependence of the resistivity was compared to a com-
bined Fuchs-Sondheimer and Maydas-Shatzkes model.

• By assuming a thickness dependence of the grain size, a reasonable fit
was obtained.

• The model suggests that the grain size of the films increases with
growth temperature.

• The growth curves give a good indication of the lower limit that film
resistivity will put on interconnect dimensions in devices made with
similar processing.
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