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Introduction — Fraction of ionization

o High power impulse magnetron sputtering
(HiPIMS) provides higher ionized flux fraction
than dc magnetron sputtering (dcMS)

Gudmundsson (2020) PSST 29 113001

o Due to the higher fraction of ionization of the
sputtered species

o the films are smooth and dense

o control over phase composition and
microstructure is possible

o enhanced mechanical, electrical and optical
properties

o improved film adhesion

Alami et al. (2005) JVSTA 23 278

Kateb et al. (2019) JVSTA 37 031306
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Introduction — Deposition rate

o There is a drawback o0

o The deposition rate is lower for HiPIMS i
when compared to dcMS operated at the £
same average power

o The HiPIMS deposition rates are typically o
in the range of 30 — 85% of the dcMS
rates depending on target material

o Many of the ions of the target material are
attracted back to the target surface by the
cathode potential

8121 SINOQ / 318l SINIIH

From Samuelsson et al. (2010) SCT 202 591




Influence of magnetic field
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Influence of magnetic field — Deposition rate

o The Ti deposition rate and the

ionized flux fraction are measured
using a gridless ion meter (m-QCM) E o
Kubart et al. (2014) SCT238 152 W ‘i :
o The ion meter is mounted on a probe i I
. < z
holder which can be moved around R A
within the chamber T =
o The Ar working gas pressure was set Vacuum r

to1 Pa

o In all cases the pulse width was
100 us at an average power of 300 W
o The confining magnetic field is varied
by moving the magnets
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Influence of magnetic field — Deposition rate

o The Ti deposition rate recorded at
substrate position using a gridless
ion meter (m-QCM)

o
+10% with decreasing |B|
(but no obvious trend)

o HiPIMS fixed voltage
+110% with decreasing |B|

o HiPIMS fixed peak current
+40% with decreasing |B|

o In HiPIMS operation the deposition
rate increases with decreasing |B|
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From Gudmundsson (2020) PSST 29(11) 113001

based on Hajihoseini et al. (2019) Plasma 2 201
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Influence of magnetic field — Ionized flux fraction

o lonized flux fraction recorded

o
Always around 0 %
(Kubart et al., 2014)

o HiPIMS fixed voltage
—75% with decreasing |B|

o HiPIMS fixed peak current
+50% with decreasing |B|

o The ionized flux fraction decreases
with decreasing |B| when the HiPIMS
discharge is operated in fixed voltage
mode but increases in fixed peak
current mode

o Opposing trends
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Influence of magnetic field — o and [,

o Low deposition rate is the main drawback of this sputter
technology and hampers its use for industrial applications
o The main reason for the low deposition rate of the HiPIMS
discharge is suggested to be due to the back-attraction of
the ions of the sputtered species to the cathode target
o Increased deposition rate in HiPIMS often comes at the
cost of a lower ionized flux fraction of the sputtered
material
o Two internal parameters are of importance
o oy — ionization probability
o [, — back-attraction probability
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Influence of magnetic field — o and [,

o We can relate the measured quantities normalized
deposition rate Fpg spuc and the ionized flux fraction Fi gux

r
FDR,sput = % = (1 - atﬁt)
0

MRjons  Toa(1 —53)  o(1—5)

rDR,sput B I_0(1 - Oétﬁt) B (1 - Oétﬁt)
to the internal parameters back attraction probability 5,

Fti,ﬂux =

_ 11— FDR,sput
1— FDR,sput(‘I - Fti,ﬂux)

and ionization probability o

B

ot = 1— FDR,sput(-I - Fti,ﬁux)

Hajihoseini et al. (2019) Plasma 2 201 and later refined by Rudelph et al. (2021} JAP. 129 033303
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Influence of magnetic field — Optimization

o There are two measures of how good
a HiPIMS discharge is:

o the fraction Fpg . Of all the
sputtered material that reaches the
diffusion region (DR)

o the fraction F g« Of ionized species
in that flux

o There is a trade off between the
goals of higher Fpg spuc and higher
Fihﬁux

o The figure shows Fpg spur aNd Fi flux
as functions of o, at assumed fixed
value of 5, = 0.87
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From Brenning et al. (2020) JVSTA 38 0B30UE & !
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Influence of magnetic field — Optimization

o For a particular application an ionized flux
fraction of 30 % is suitable but

0.8 S ﬁt S 095 0.8} 7—22?}25 ///‘/‘ 0.8
o If the back-attraction can be reduced to rd v
B¢ = 0.8 the deposition rate is increased iE
o The solid lines show that reducing the -
back-attraction to 5, = 0.8 where a, = 0.69 . 1o
is sufficient to maintain F g,x = 0.30 (red o
circle) Fpr,sput = 0.45 or a factor of three
increase in the deposition rate From Brenning et al. (2020) JVSTA 38 033008

o The question that remains:
o How can we vary the ionization probability
oy and maybe more importantly the
back-attraction probability g; ?
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Influence of magnetic field — o and [,

o When operating in the fixed peak current
mode (black) the ionization probability o
is roughly constant independent of the
magnetic field strength

o When operating in the fixed voltage mode
(red) the ionization probability o
increases with increased magnetic field
strength — which is essentially due to the
increased discharge current

o oy can be varied intherange 0 < oy < 1
by the discharge current amplitude Jp

150 200
B, [Gauss]

From Hajihoseini et al. (2019) Plasma 2 201
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Influence of magnetic field — Optimization

o The figure shows g, as a function of
the magnetic field strength

(measured 11 mm above the . A "”I
racetrack center) for a fixed peak PRSI S -
discharge current ool

o There is a clear trend that 5, is
lowered when the magnetic field 0-sf . . .
strength is reduced N R -

o Our proposed figure of merit (1 — /)
changes by a factor of
(1 _ 093)/(1 _ 096) — 18 and/or Hajihoseini et al. (2019) Plasma 2 201

From Brenning et al. (2020) JVSTA 38 033008
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Influence of magnetic field — o and [,

o The internal discharge
parameters oy and S, from the
ionization region model (IRM)
Huo et al. (2017) JPD 50 354003

o The ionization probability o
versus the discharge current

o The ion escape fraction

(1 — B) versus the magnetic
field strength

From Rudolph et al. (2021a) manuscript in preperation

0.90
21.7mT
13.7-23 H\TT o -
075} 213mT
E ~ 18.4 mT
= 16 mT
g 137 mT
£ 060
g
e—1AmT = constant current
o [ constant voltage|
0 20 40 60 80 100
Ip peak (A)
0.20
® = fixed current
linear fit
=
x 0.16
£
g
FTor

[

COES
0E10 C10EO ' C5ES CSE0  COE10 COEQ

008l T ML L T
10

magnetic field strength B, (mT)

25




The balance between deposition rate and ionized flux fraction in high power impulse magnetron sputtering

Influence of magnetic field — Pulse length

o For the same average power, shorter

pulses give higher deposition rate than 10T
longer pulses HEH 05
o To maintain the same average power the . o T o §
frequency is varied ey e
o Shortening the pulses does not affect 0 R P
the ionized flux fraction, which remains o .,
essentially constant e

pulse length [us]

o with shorter pulses, the afterglow
contributes increasingly more to the
total deposition rate

o the ionized flux fraction from the
afterglow is typically higher compared
to that during the pulse due to absent
back-attracting electric field

From Rudolph et al. (2020) PSST 29 05LT01
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Influence of magnetic field — Pulse length

Fi DR,sput —

DR

Mo

= (1 - Oétﬁt)

Frem Brenning et at. (2020} JVSTA=38 033008

o By switching-off the cathode potential 09
during the afterglow decreases the ot
effective 3, ” A
<< e
o [, decreases with decreasing pulse length or ©
o The relative contribution of the afterglow o = 4TH
ions to the flux toward the DR increases T LR
. pulse length [ps]
steadily for shorter pulses 0
=—41A
o The ionization probability o, also P
decreases with a shorter pulse length o .
07 \ -
o The useful fraction of the sputtered \
species therefore increases B R
05 (b) probabilty due to lower peak current
40 60 80 100

pulse length [us]
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Influence of magnetic field — Pulse length

o HiPIMS can be optimized by selecting

o pulse power
o pu|se |ength PROCESS |DISCHARGE FLUX
. parameters | parameters | parameters
o working gas pressure
o magnetic field strength

o The HiPIMS compromise — a fully
ionized material flux is not required to
achieve significant improvement of the
thin film properties

o A sufficiently high peak discharge
current is required to reach the desired
ionized flux fraction

o Further increase would lead to
unnecessarily low deposition rates

From Brenning et al. (2020) JVSTA 38
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Mixed high power and low power pulsing

o The HiPIMS discharge can also be
optimized by mixing two different power .
levels in the pulse pattern

o Standard HiPIMS pulses create the
ions of the film-forming material

o An off-time follows, during which no ==
voltage (or a reversed voltage) to let Viwef—y
ions escape towards the substrate

o Then long second pulse, in the dc
magnetron sputtering range, is applied,
to create neutrals of the film-forming
material

Lhie #lotr taems

I
T
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Mixed high power and low power pulsing

o The optimum power split is

decided by the lowest ionized flux SUB PROBIEM 1 - SUBPROBIEN2:
fraction that gives the desired film —
properties for a specific [
application 1 e
o The low-power pulse is a much
more efficient way of creating

neUtral atoms Of the SpUttered OPTIMUM PROCESS PARAMETERS DETERMINED

species (8 Puss b s, t Vs e )
o The high-power pulse should be

applied to create mostly ions

Brenning et al. (2021) PSST 30 0150
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Summary

o With varying magnetic field:

o For HIiPIMS in the fixed voltage mode: A trade-off between
the deposition rate (increases by more than a factor of two)
and the ionized flux fraction (decreases by a factor 4 to 5)
with decreasing |B|

o For HiPIMS in the fixed peak current mode: Decreasing |B|
improves both the deposition rate (by 40%) and the ionized
flux fraction (by 50%)

o There is an inescapable conflict between the goals of
higher deposition rate and higher fraction of ionized
species in the sputtered material flux

o The HiPIMS discharge can be optimized by adjusting the

pulse power, pulse length, working gas pressure and the
magnetic field strength
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Thank you for your attention

e-mail: tumi@hi.is

The slides can be downloaded at
http://langmuir.raunvis.hi.is/~tumi/ranns.html

and the project is funded by
o lcelandic Research Fund Grant Nos. 130029 and 196141
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