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Introduction to plasmas

e Plasma is weakly- or fully ionized gas that consist of electrons,

ions, neutral atoms and neutral molecules

e Fully ionized plasma consists of only electrons and ions but
weakly ionized plasma has neutral particles as well
e Most of the universe is made of plasma

— The interior of stars and their atmosphere, the gaseous
nebula and most of the interstellar hydrogen are plasmas

— We know plasma from the fluorescent tube, neon signs, and
the Aurora Borealis
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Introduction to plasmas
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e In the early 20th century gas conductivity and gas breakdown,
electron emission and electron impact excitation of atoms was

investigated in dischages

e In the later half of the 20th century application of plasmas
include, light sources, lasers and materials processing

e Today plasmas play a fundamental role in integrated circuits

\ fabrication /




4 N

Applications of plasmas

e Molecular discharges and their mixtures play a key role in
etching and deposition of thin films in integrated circuit
fabrication

e Oxygen plasma is used to remove the photoresist and to grow
thin oxide films

e Silicon is etched in plasmas that include fluorine or chlorine

e The use of plasmas is the only known method to etch the small
features that are the backbone of modern electronics
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/Applications of plasmas \

e In order to get a nuclear fusion the repulsive force between
particles has to be overcome

e Since kinetic energy is equivalent to heat, nuclear fusion is
more likely of the particles (the fuel) are at high temperature -
millions of degrees Kelvin - at this temperture the fuel is fully
ionized

e To retain this high temperature the gas mixture can not touch
a surface or walls or any other material

e There are mainly two methods that have been applied to create
this high temperture gas:

— The fuel is confined in a magnetic bottle with a magnetic
field

\ — Powerful laser pulses are shot at a solid fuel /
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Plasma processing of materials

e integrated circuits fabrication
— etching

— deposition of thin films

deposition of unique materials

e magnetic materials

hard, protective, and wear resistant coatings

optical coatings

decorative coatings

e low friction films
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Plasma processing of materials
e The main application of plasma processing of materials is in
the electronics industry (integrated circuits) (Graves, 1994)
e Plasmas are used to etch semiconductors, metals og dielectrics

e Plasmas are used to deposit thin, semiconducting films,
metallic films and dielectrics

e The plasma chemistry is complicated, since it includes both
neutral and charged particles

e The electron energy distribution plays a key role in
determining the plasma chemistry

e Exposure of a surface to ions and reactive atoms gives much

higher etch rate than only ions or only reactive atoms
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e As the feature sizes of integrated circuits shrink (now < 90 nm)
the processing technology has to be improved

lasma processing of materials \

e This lead to the move from wet etching to dry etching

i
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e The etching profiles (a) wet or chemical etching and (b) dry or
plasma etching
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Plasma parameters
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Plasma parameters

e The plasma is described by the following parameters
— Electron density n, and ion density n;
— Electron temperature 7T,

— Plasmas, which are quasineutral (n; &~ n.), are joined to
wall surfaces across a positively charged layers, called
sheaths, of thickness s

A potential is formed between the bulk plasma and the wall,
the plasma potential, V},

T
us
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Plasma parameters

e Given the control parameters
— Neutral gas pressure p
— Applied power P, or voltage V¢
— Driving frequency w
— Discharge size R and L
we are intersted in
— Jon and atom flux to the surface I';, T,
— Ion energy distribution (IED) f(&)
— Electron energy distribution (EED) f (&)
— Sheath thickness s
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A global (volume averaged) model

e The plasma chemistry can be complicated
— Argon discharge consists of
e, Ar, ArT, Ar*, ...
— Oxygen discharge consists of
e, 0, O, O, OF, 05,07, 0%, O, .....
— SF¢ discharge consists of
e, SFg, SFo, SFf, SF4, F*, F~, F* F,, F,....

\_
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A global (volume averaged) model

e The global model is based on:
— Energy balance

— Particle balance for all particles

e For argon discharge:
Power balance
— Absorbed power = Power loss
— Paps = enoupAegr
Particle balance

— Particles lost to the surface = Ionization in the bulk

— NoupAeg = kizngnowR2L

\_
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A global (volume averaged) model

e The total energy lost per ion lost from the system:
Er = gc =+ ge + &

where
— &, is the collisional energy loss per electron-ion pair created
ke:c,i kel 3me

gc = g’LZ + Z 86$,'i Te

— &, 1s the mean kinetic energy lost per electron lost. If the
electrons have Maxwellian energy distribution & = 2T,

— &; is the mean kinetic energy lost per ion and is mainly due
to acceleration across the sheath

\_ /
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A global (volume averaged) model
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e The collisional energy loss per electron-ion pair created versus
the electron temperature for argon, atomic oxygen and
molecular oxygen
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A global (volume averaged) model

e Rate coefficeints for electron impact collisions are calculated for
electron impact collisions from collisional cross sections

assuming Maxwellian electron energy distribution

k= (E>1/2 /OOO EV26(E)F(E)dE

me

and the Bohm velocity

(eTe) 1/2
up =
my
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A global (volume averaged) model

Average neutral density

Ton density profile

A

\ "‘i.x/

e Effective area

Ao = 21R (Rhg + Lhy)

where hr = nsr/n, and hr, = ngr,/n,

\_ /
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A global (volume averaged) model
e Gives estimates of the plasma paramters with limited
calculations or computing power (ne, Te, Vo1, 7i)
e Tool to investigate which reactions are improtant in gas
mixtures
e It is a volume averaged model, no spatial variation

e The electron energy distribution function is given
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/Plasmas and Discharges \

Capacitive discharge

e In the early days dry etching was performed in a capacitive
discharge with ions and reactive neutral particles (atoms and

molecules)

e The ion density is determined by the rf voltage that is applied
(parallel plate capacitor). The ion density and the ion
bombarding energy cannot be controlled independently
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Plasmas and Discharges

Electron cylclotron resonance (ECR) and Inductively coupled

discharge
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/Plasmas and Discharges \

e To increase throughput and achive better control of the
production new discharges have been developed (Lieberman
and Gottscho, 1994; Gudmundsson, 1999b)

e The inductively coupled discharge and the ECR discharge have
1 — 2 orders of magnitude higher ion density than the
capacitively coupled discharge

e The ion energy is an order of magnitude lower
e These discharges allow for independent control of ion density
and ion energy

— Jon density is controlled by the power applied to the

inductive coil (or microwave power)

— The ion energy is controlled by rf bias that is applied to the

\ substrate holder /
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/Plasmas and Discharges
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Capacitively coupled High density
Pressure [mTorr] 10 — 1000 0.5 -50
Power [W] 50 - 2000 100 - 5000
Driving frequency [Mhz] 0.05 — 13.56 0 — 2450
Electron density [cmfs] 109 — 1010 1010 _ 1012
Electron temperature [eV] 1-5 2 -7
Ion energy [V] 200 — 1000 < 100
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/Electrons-Capacitively coupled discharge \
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e The electron energy probability function (EEPF) in the bulk of
an argon discharge measured with a Langmuir probe at 30 and
300 mTorr pressure (Godyak et al.; 1993)

e At low pressure the electron energy probability function can be
described by a sum of two Maxwellian distributions that

\ becomes more Druyvesteyn like as the pressure is increased /
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/Electrons-Inductively coupled discharge \
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e The electron energy probability function (EEPF) in the bulk of
an oxygen discharge at 720 W measured with a Langmuir probe
at 2.5, 10, 20 og 35 mTorr pressure (Gudmundsson et al., 2000)

e The electron energy distribution is Maxwellian at low pressure

\ but deviates from Maxwellian as the pressure is increased /
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Electrons-Inductively coupled discharge
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e The plasma parameters along the radii of an inductively
coupled oxygen discharge at 720 W (Gudmundsson et al., 2000)

— (a) electron density ne
— (b) effective electron temperature Teg

— (c¢) dc plasma potential

\_ /
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Ions-Capacitively coupled discharge
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e The ion energy distribution in a capacitively coupled oxygen
discharge at 1000 W and 2mTorr. The peaks indicated by 1 are
due to OF ions and peaks indicated by 2 are due to OF ions
(Kuypers and Hopman, 1988)
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Ions-Inductively coupled discharge
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e The ion energy distribution from an inductively coupled oxygen
discharge at 675 W and 3, 7 og 20 mTorr pressure
(Gudmundsson, 1999a).

\_ /
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/Ions-Inductively coupled discharge \
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e The mean energy of O and OF ions in an oxygen discharge at
565 W versus the gas pressure in a planar inductively coupled
discharge

e Ion energy

T,
\ & = Ee + Vo1 + Vi sin(wt) /
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dc Sputtering
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e Sputtering was discovered in 1852
e An ion sputters an atom and/or releases electrons from a target

e This can be done by accelerating ions from a plasma which is
created between electrodes when a dc voltage of 1000 — 3000 V
is applied

\_ /
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dc Sputtering

e Disadvantages of dc sputtering
— Slow film growth
— Low ionization

— Heating of the substrate

e It is beneficial to have the sputtering discharge work at
— higher current density
— lower operating voltage
— lower gas pressure

than is possible in a dc sputtering discharge

\_ /
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/Planar Magnetron Sputtering Discharge \
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e The planar magnetron was developed to enhance the sputtering
and increase the deposition rate

e A typical planar magnetron discharge consist of a planar
cathode (sputtering source or target) parallel to an anode
surface

e In a magnetron sputtering discharge the anode is of secondary

\ importance /

33

~

/Planar Magnetron Sputtering Discharge

'dc(

e A magnet is placed at the back of the cathode target with the
pole pieces at the center and perimeter

e It generates magnetic field lines that enter and leave through
the cathode plate

e The magnetic field confines the energetic electrons near the
cathode, where they undergo numerous ionizing collisions

\ before being lost to a grounded surface /
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/Planar Magnetron Sputtering Discharge
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the cathode and strike it at high energy

e The impact of the ions on the cathode (target) results in
sputtering of metal atoms and secondary electron emission
from the cathode surface

\ maintain the discharge

e Ions, not confined by the magnetic field, are accelerated toward

e Energy gained in the cathode sheath by secondary electrons
emitted from the cathode goes into the ionization necessary to

™
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Planar Magnetron Sputtering Discharge
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that sits just below the cathode

(After Field et al. (2002))

e The discharge forms as a high-density, bright, circular plasma

/
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Planar Magnetron Sputtering Discharge
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e A typical dc planar magnetron operates at a pressure of 1 — 10
mTorr with a magnetic field strength of 0.01 — 0.05 T and at
cathode potentials 300 — 700 V

e The magnetic field can be created by permanent magnets,

electromagnets or combination of both

/
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/Reactive Magnetron Discharge \

e Conventional dc magnetron sputtering is ideal for depositing
thin metallic films

e Compounds such as oxides and nitrides must be deposited with
reactive sputtering in which a metal target is sputtered inside a

\ discharge of reactive gas /
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e The reactive process has required the development of more
sophisticated sputtering systems such as

— rf magnetron sputtering discharge

— pulsed rf magnetron sputtering discharge

\ — asymmetric bipolar magnetron sputtering discharge

/Reactive Magnetron Sputtering Discharge\

/
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Summary

e Weakly ionized plasmas and its applications was reviewed
e The use of Langmuirprobe was discussed

e The ion energy distribution of processing discharges was
discussed

e Sputtering and magnetron sputtering discharge was reviewed

\_
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