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Introduction

e Magnetron sputtering discharges are widely used in thin film
processing

e Applications include
— thin films in integrated circuits

— magnetic material

hard, protective, and wear resistant coatings

optical coatings

decorative coatings

— low friction films

e The demand for new materials and layer structures has lead to

/

development of more advanced sputtering systems
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Introduction

e Introduction to dc Sputtering
e The Magnetron Sputtering Discharge
e Variations of the Magnetron Sputtering Discharge

e Examples of Applications
— superlattice

— MIM
— trench filling
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eakly Ionized Plasmas

e Plasma is a partially or fully ionized gas that includes

electrons, ions, neutral atoms and molecules

e The electrons, neutral species and ions are not in thermal
equilibrium in a partially ionized plasma

e The following parameters describe the discharge
— Electron density n, and ion density n;

— Electron temperature T

e We want to know and control
— Flux of ions and neutrals to the substrate, I';, 'y,
— The ion energy distribution (IED) f(&;)
— The electron energy distribution (EEDF) f(&)
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dc Sputtering
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e Sputtering was discovered in 1852
e An ion sputters an atom and/or releases electrons from a target

e This can be done by accelerating ions from a plasma which is
created between electrodes when a dc voltage of 1000 — 3000 V
is applied
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dc Sputtering

e Disadvantages of dc sputtering
— Slow film growth
— Low ionization

— Heating of the substrate

e It is beneficial to have the sputtering discharge work at
— higher current density
— lower operating voltage
— lower gas pressure

than is possible in a dc sputtering discharge
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/Planar Magnetron Sputtering Discharge \
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e The planar magnetron was developed to enhance the sputtering
and increase the deposition rate

e A typical planar magnetron discharge consist of a planar
cathode (sputtering source or target) parallel to an anode
surface

e In a magnetron sputtering discharge the anode is of secondary

\ importance /




/Planar Magnetron Sputtering Discharge

e
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e A magnet is placed at the back of the cathode target with the
pole pieces at the center and perimeter

o It generates magnetic field lines that enter and leave through
the cathode plate

e The magnetic field confines the energetic electrons near the
cathode, where they undergo numerous ionizing collisions

\ before being lost to a grounded surface /
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/Planar Magnetron Sputtering Discharge \
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e Ions, not confined by the magnetic field, are accelerated toward
the cathode and strike it at high energy

e The impact of the ions on the cathode (target) results in
sputtering of metal atoms and secondary electron emission
from the cathode surface

e Energy gained in the cathode sheath by secondary electrons
emitted from the cathode goes into the ionization necessary to

\ maintain the discharge /
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Planar Magnetron Sputtering Discharge
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e The discharge forms as a high-density, bright, circular plasma
that sits just below the cathode

/
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Planar Magnetron Sputtering Discharge
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e A typical dc planar magnetron operates at a pressure of 1 — 10
mTorr with a magnetic field strength of 0.01 — 0.05 T and at

e The magnetic field can be created by permanent magnets,

electromagnets or combination of both

~

/
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/Planar Magnetron Sputtering Discharge \
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e A major problem in magnetron sputtering is the formation of a
“racetrack”

e Due to this only about 25 — 30 % of the target is normally used

\ during sputtering /
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Planar Magnetron Sputtering Discharge

e Conventional magnetron sputtering processes suffer from

fundamental problems such as
— low target utilization
— target poisoning

— poor deposition rates for dielectric and ferromagnetic

materials
— target thermal load limits the available current

— electrical instabilities or arcs cause process instability
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Planar Magnetron Sputtering Discharge

e Several sputtering systems have been designed to overcome
these obstacles

e Some of these problems have been alleviated by
— pulsing the applied target voltage
— additional ionization by rf or microwave power

— increased magnetic confinement.

reshaping the cathode for more focused plasma (hollow
cathode)
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/U nbalanced Magnetron Sputtering \
Discharge
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e The unbalanced magnetron was developed as an attempt to
increase the ion current density in the vicinity of the substrate

e Thus the ion current density in the vicinity of the substrate can
be varied by varying the intensity of the magnetic flux through
the pole faces

e As a consequence the energy of the ions bombarding the

\ substrate during film growth can be tuned by the substrate bi%/
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/Reactive Magnetron Discharge \

e Conventional dc magnetron sputtering is ideal for depositing
thin metallic films

e Compounds such as oxides and nitrides must be deposited with
reactive sputtering in which a metal target is sputtered inside a

\ discharge of reactive gas /
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/Reactive Magnetron Sputtering Discharge\

e The reactive process has required the development of more
sophisticated sputtering systems such as

— rf magnetron sputtering discharge

— pulsed rf magnetron sputtering discharge
\ — asymmetric bipolar magnetron sputtering discharge J

18
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Asymmetric Bipolar Pulsed Magnetron
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e Reactive dc sputtering for the deposition of dielectrics from
conductive targets is limited by target poisoning and the
consequent arcing and process instability

e Poisoning is the build-up of insulating layers on the target

surface

\_
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/Asymmetric Bipolar Pulsed Magnetron
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e Asymmetric bipolar pulsing of the magnetron sputtering
discharge has grown rapidly to become one of the main

SiO9, TiO2, Al;O3, and MgO by reactive sputtering

e The magnetron discharge is pulsed in the medium frequency
range (10 — 350 kHz) when depositing insulating films

e This significantly reduces the formation of arcs and, reduces

\ the number of defects in the resulting film

techniques for deposition of high quality dielectric films such as

20



/Asymmetric Bipolar Pulsed Magnetron \
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e The target is sputtered at normal operating voltage (typically
-400 to -500 V) for a fixed “pulse on” time

e The pulse on time is limited, such that charging of the
poisoned regions does not reach the point where breakdown
and arching occurs

e The charge is then dissipated through the plasma during “pulse

\ oft” period by switching the target voltage to a positive value/
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/Ionized Physical Vapour Deposition \
(IPVD)

e In sputtering the majority of ions are the ions of the inert gas
and the sputtered vapour is mainly neutral

e The ion density of the sputtered material is significantly lower

e Over the last decade new ionized vapour deposition techniques
have appeared that achieve 50 — 90 % ionization of the
sputterend material

e The energy of the ions can be tailored to obtain impinging
particles with energies comparable to typical surface and
molecular binding energies

e This is an advantage over evapouration techniques such as

\ molecular beam epitaxy (MBE) /
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Ionized Physical Vapour Deposition
(IPVD)

e The development of ionized physical vapour deposition (IPVD)
devices was mainly driven by the need to deposit metal layers
and diffusion barriers into trenches or vias of high aspect ratios

e Jonizing the sputtered vapour has several advantages:

— improvement of the film quality
— control of the reactivity

— deposition on substrates with complex shapes and high
aspect ratio

\_ /
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Ionized Physical Vapour Deposition
(IPVD)

e When the flux of ions is higher than the flux of neutrals or

'y > T'y, the process is referred to as ionized physical vapour
deposition (IPVD)
e This is achieved by
— increased power to the cathode (high power pulse)
— external supply of energy through rf coil or microwaves
— reshaping the geometry of the cathode to get more focused

plasma (hollow cathodes)

e Common to all highly ionized techniques is a very high density

/

plasma
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rf Inductive Coil in a Magnetron
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e In order to generate highly ionized discharge a radio-frequency
discharge can be added in the region between the cathode and

the anode

™
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rf Inductive Coil in a Magnetron

Metal atoms sputtered from the cathode transit the rf plasma

and can be ionized

The metal atoms have low ionization potential (6 — 8 V)
compared to the inert Ar (15.8 V)

The metal ions can then be accelerated to the substrate by
means of a low voltage dc bias

The metal ions arrive at the substrate at normal incidence and

at specific energy

~

/
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/Hollow Cathode Magnetron \

(From Klawuhn et al. (2000))

e A hollow-cathode magnetron source employs a magnetron
discharge confined in an inverted cup-shaped target

e Due to the cup shaped target geometry, the electrons are
electrostatically (target negatively biased) or magnetically
\ confined within the volume of the source /
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Unipolar High Power Pulsed Magnetron
e In a conventional dc magnetron discharge the power density is
limited by the thermal load on the target

e Most of the ion bombarding energy is transformed into heat at
the target

e In unipolar pulsing the power supply is at low (or zero) power
and then a high power pulse is supplied for a short period

\_ /
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/U nipolar High Power Pulsed Magnetron \
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(From Gudmundsson et al. (2002))

e A discharge with a power supply that can deliver up to 2.4
\ MW of power in 100 us pulses at frequency of 50 Hz /
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/U nipolar High Power Pulsed Magnetron \
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e The electron density versus time from the initiation of the

pulse 9 cm below the target for gas pressure 5, 10 and 20
\ mTorr. The pulse is 100 us long and the average power 300 W/
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/Unipolar High Power Pulsed Magnetron \
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e The position of the initial density peaks versus the time from

pulse initiation

e The argon pressure was 5 mTorr, the target made of titanium,

\ and the pulse energy 8 J /
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Applications

e The target voltage is either dc or asymmetric bipolar pulsed

e The magnetron sputtering discharge has 3 targets
— Growth of alloys

— Growth of layers of different metals or alloys

— Growth of oxides and nitrides (reactive sputtering)

- /
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/Applications - Superlattice \
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e Mo/V superlattices were grown in a dc magnetron sputtering
discharge on MgO (0 0 1) substrate

e The dc magnetron has three targets, Mo, V and Pd

e Layers of Mo and V, a few nanometers thick were grown

alternatively
\o Hydrogen interactions in two-dimensional superlattice /
33
/Applications - Superlattice \

735 mbar

400 mbar

49 mbar

Intensity (arbitrary units)

W 2 mbar
A S\

T T T T T
24 25 26 27 28 29
20 (deg)

(From Reynaldsson et al. (2003))

e The shift in the Bragg peak originates from the out of plane
expansion of the Mo/V 8/4 u.c. superlattice as hydrogen enters

\ the vanadium layers /
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Applications - Superlattice
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e The expansion is linear with hydrogen concentration

e The expansion is temperature independent which indicates that

/

there is no phase change

35

4 N

Application - Alloy and MIM

e The goal is to create a MIM device that is on the nanoscale
— an ultra-thin conducting film on an insulating substrate
— an ultra-thin dielectric layer

— another ultra-thin conducting film

o Lattice mismatch between film and substrate causes strain in
the film

e Strain increases the free energy of the interface and leads to
island formation and thus greater minimal thickness for film

formation and increased roughness

e The roughness increases the resistivity of the ultra-thin film

\_ /
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Application - Alloy and MIM

e Thus we choose a thin film material with a crystal structure
compatible to that of the substrate

e The first choice was an Cr-Mo alloy and MgO insulator

e We use Mo, Cr, and Mg targets in the magnetron sputtering
discharge

e Ultra-thin lattice matched heteroepitaxial Cry gzsMog.37 alloy
were grown on a MgO (100) substrate by sputtering the Cr and
Mo targets simultaneously

e MgO insulator is grown by reactive sputtering in Ar/O5
discharge from a Mg target

\_ /
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Application - Alloy and MIM
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(From Meyvantsson et al. (2004))

e The optimum temperature for the growth of Crgg3Mog.37 alloy
is determined 200°C

\_ /
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Application - Alloy and MIM

100nm

e

e A SEM image of Crg.63Mog.37/MgO/Crg.¢3Mog.37 MIM grown
on MgO with 20 nm / 5 nm / 20 nm

. /
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Application - Trench filling

e Ta thin films grown on Si substrates placed along a wall of a 2
cm deep and 1 cm wide trench

— conventional dc magnetron sputtering (dcMS)

— high power pulsed magnetron sputtering (HPPMS)
e Average power is the same 440 W

e They were compared by scanning electron microscope (SEM),
transmission electron microscope (TEM), and Atomic Force
Microscope (AFM)

. /
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/Application - Trench filling \
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Application - Trench filling

e TEM images 1 mm from the opening

e dcMS grown films exhibit rough surface, pores between grains

and inclined columnar structure, leaning toward the aperture

e Ta films grown by HPPMS have smooth surface, and dense
crystalline structure with grains perpendicular to the substrate

e We relate this to the high ionization fraction of the sputtered

species

\_ /
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Summary

o We reviewed
— dc sputtering
— dc magnetron sputtering
— asymmetric bipolar magnetron sputtering
and introduced

— unipolar high power pulsed magnetron sputtering

e We demonstrated the use of a magnetron sputtering discharge
— to grow superlattices
— to grow alloys and simple devices on the nanoscale

— for trench filling

\_ /
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