Háskóli Íslands Haust 2007

Verkfræðideild

Rafmagns- og tölvuverkfræði

08.33.40 Hlutjónað rafgas

Dæmablað 6

Skilafrestur 16. október 2007 kl. 14:00

1. Collisional Sheath Law

(15) Dæmi 6.4 í Lieberman og Lichtenberg

2. Thermodynamics and Vapor Pressures

(15) Dæmi 7.5 í Lieberman og Lichtenberg

3. Langmuir probe

(15) A cylindrical Langmuir probe with radius $a=40~\mu\mathrm{m}$ and length $d=63~\mathrm{mm}$ is used to determine the plasma density n_{e} and electron temperature T_{e} in an argon discharge. The plasma potential (with respect to ground) is measured to be 30 V. The Langmuir probe I versus V_{B} characteristic is measured to be (V_{B} is the probe voltage with respect to ground).

(a) According to (6.6.29), a plot of I^2 versus $\Phi_P - V_B$ should be a straight line in the ion saturation regime $\Phi_P - V_B \gg T_e$. Plot I^2 versus $\Phi_P - V_B$ on linear scales for $\Phi_P - V_B \gg T_e$. Extrapolate the linear part of this curve to determine the ion saturation current I_i over the entire voltage range $0 < \Phi_P - V_B < 50$ V. Then apply (6.6.29) to I_i (where m in (6.6.29) is the ion mass) to determine n_s .

(b) Subtract $I_{\rm i}$ from I to determine the electron current $I_{\rm e}$ and plot $\ln I_{\rm e}$ (log scale) versus $\Phi_{\rm P} - V_{\rm B}$ (linear scale). You should obtain a straight line as in (6.6.6). Find $T_{\rm e}$ and $n_{\rm s}$ from your data. Compare the $n_{\rm s}$ value you find in part (a), and comment briefly on any discrepancy.