Quantitative Diagnostics of Inductively-Coupled Plasmas in O₂ : Densities and energy distributions

Jean-Paul Booth, Mickäel Foucher, Daniil Marinov, Andrew Gibson, Adriana Annušová and Vasco Guerra

Motivation

Why study low pressure RF inductive discharges in diatomic gases?

Motivation

RF plasmas in Cl_2 / O_2 (& often HBr) at low pressure widely used for selective, anisotropic etching of Si, InP etc

Motivation: understand plasmas in molecular gases

Most academic studies..

Most applications..

Motivation: understand plasmas in molecular gases

Most plasma physics studies..

Most applications..

Shows most of the mechanisms occuring in polyatomics:

- •Dissociation, surface recombination
- Electronegativity
- •Vibrational + rotational excitation

-But simpler, can measure (nearly) everything!

Test (validate) and improve Models:

- -"Global" OD models with plasma chemistry
- 2D Fluid Plasma + chemistry model : HPEM

The Inductively Coupled Plasma Reactor at LPP:

-Industrial Scale Reactor
 dimension for 300mm wafers
 -Industrial gases (O₂, Cl₂, HBr)

Pressure : 5-100 mTorr Power : up to 500W

-All surfaces Al₂O₃ (no substrate)

What we can mesure?

Electron density -Negative ions -O atom density -Vibrational distribution-

Gas temperature:

 O_2 Trot -Ar^m Doppler -O atom DopplerMicrowave resonant probe + laser photodetachment TALIF UV absorption spectroscopy

UV absorption spectroscopy IRLAS vs IRLIF HR TALIF

Electron density : Hairpin probe

 $\frac{1}{4}$ wave resonator : ~ 3 GHz :

measure plasma permittivity from frequency shift with plasma
 deduce electron density from permittivity

Avoids many of the problems of Langmuir probes:

- -Probe contamination
- -Return current path (insulating reactor walls!)
- -RF compensation

Negative ions : detect electron pulse from laser photodetachment

Electron density

Broad maximum @ 40 mTorr

Approximately linear increase with RF power

Electron density

Broad maximum @ 40 mTorr

Electron density :O₂ 200 W Compare to HPEM

Predicts maximum at the correct pressure

High pressure trend poorly modelled

Electron density moves off-axis

Negative Ion density

Laser photodetachment / hairpin detection of photoelectrons

Courtesy of Nishant Sirse, Dublin City University

Electronegativity $\alpha = n_{n_e}$

Negative ion density lower than electron density except at **low pressure and power**

Not responsible for electron depletion

Negative ion destruction : Associative Detachment

Atoms:

 $O^- + O \rightarrow O_2 + e$ (exothermic in O_2)

<u>Metastable states</u> : $O_2 {}^1\Delta_g$ (at $\approx 1 \text{ eV}$)

$$O^- + O_2 ({}^1\Delta_g) \rightarrow O_3 + e$$

 $\rightarrow O^-_2 + O_2$
 $\rightarrow 2O_2 + e$
Midey et al J. Phys. Chem. A **2008, 112, 3040-3045**

As a result, O₂ plasmas have a much lower density of negative ions

Electro-negativity highest at low pressure and low power (O and O₂ $^{1}\Delta_{g}$ low)

Negative ion density: compare to HPEM Simulation

Pure O₂

Model strongly overestimates negative ion density!

Loss processes underestimated, or missing mechanisms?

Atom densities: Two-Photon Absorption Laser-Induced Fluorescence (TALIF)

High spatial and temporal resolution measurements
 Relative densities of ground-state O atoms
 Absolute densities: use calibration techniques

Niemi et al : PSST 14(2005) 375-386

Pure O₂ : Atom density

O density increases: -with pressure -with RF power :but saturates

→Dissociation fraction?

Pure O_2 : "Dissociation fraction "

Normalise to n_{02}^0 , the density of (cold) gas before plasma:

Maximal at 10 mTorr (n_e maximum at 40 mTorr)

Dissociation saturates @ 20-30%

Why not 100%?

Gas temperature?

O atom density: comparison to HPEM

Pure O₂ 200 W

Model strongly overestimates O atom density!

Error in dissociation crosssections?

High-sensitivity ultra-broad-band Absorption spectroscopy

• Baseline noise $\approx 10^{-5}$, 250nm spectrum simultaneously •Allows whole vibrational bands to be observed Pure O₂ plasma UV absorption

Cold O_2 doesn't absorb above $\approx 200 \text{ nm}...$

Pure O₂ plasma UV absorption

Pure O₂ plasma UV absorption

Levels up to $v'' \approx 18$ half-way to dissociation!

Schumann-Runge bands

Pure O₂ : UV absorption

Vibrational-state resolved absorption cross-sections →Extract vibrational distribution functions

(Courtesy of Christophe Laux / Specair)

Pure O₂ : UV absorption

Vibrational-state resolved absorption cross-sections →Extract vibrational distribution functions

(Courtesy of Christophe Laux / Specair)

(NB cannot measure below v"=4)

O₂ Vibrational distribution functions (function of RF power :10 mTorr)

- Tail Tv ≈7000 K
- Up to 3% of O_2 in v = 4-18
- •Saturates at high power

O₂ Vibrational distribution functions (function of pressure: 500W)

Modelling the VDF: IST Lisbon

Lowest levels in equilibrium with T_{gas}

Higher levels much hotter

VDF determined by: -electron impact excitation -V-T O₂ - O

Effect of vibrational excitation on electron-induced processes

Excitation to >v=10 has a strong effect on both cross-sections: •Lower threshold •Higher cross-section

Dissociation and negative ion production significantly enhanced

Gas temperature: Absorption spectra at higher resolution:

Look at one band in higher resolution : Change grating 300l/mm to 2400l/mm:

Absorption spectra at higher resolution:

At these pressures $T_{trans} \approx T_{rot} << T_{vib}$

Absorption spectra at higher resolution:

Fit to simulated spectra to determine T_{rot} :

O₂ rotational temperature

Fit to simulated spectra to determine T_{rot}:

Explains why O atom density does not exceed 30% of initial gas density

Gas temperature from Ar^m IRLAS Doppler width

Add 10% Ar Determine temperature from Doppler width of Ar metastable absorption at 772nm

Laser beam at reactor mid-plane:

NB measurement integrated over the reactor diameter, weighted by the Ar^m density profile

Gas temperature from Ar^m IRLAS Doppler width

From Ar^m IRLAS

Is thermal equilibrium $T_{trans} = T_{rot}$ established at the lowest pressures?

Compare the two techniques:

BIPP

Can we directly measure translational temperature of O atoms? -with time and space resolution -probe energy relaxation rates (surface and gas phase)?

Simulated gas temperature (300W)

Reasonable trend but underestimated heating:

-underestimated energy release from dissociation?

-neglected heating mechanisms?

-overestimated thermal accomodation at walls?

High resolution TALIF for O atom temperature

D. Marinov, O. Guaitella, M. Foucher, JP. Booth (LPP)

C. Drag, C. Blondel (Lab Aime Cotton)

Standard TALIF

- A lot of information is hidden in the line shape!
- But it is not accessible because of the broad and often unknown laser line profile.

Doppler line width – a direct measure of the translational gas temperature

$$\frac{\Delta v_{FWHM}}{v_0} = \sqrt{\frac{8kT\ln 2}{Mc^2}}$$

At 300 K Δv_0 = 0.3 cm⁻¹

Single mode pulsed laser (Aimé Cotton)

Single mode pulsed laser (Aimé Cotton)

• Doppler and sub-Doppler line profiles can be accurately measured.

Laser performance

Fundamental line width: determined by Fourier transform of pulse duration (22MHz) + locking jitter (25MHz)

	Wavelength (nm)	Laser energy (mJ)	Estimated line width
Fundamental	902.32	10	47 MHz
Frequency doubled	451.16	2	
Frequency quadrupled	225.58	0.25	188 MHz (0.01cm ⁻¹ @ 2 photon)
		3 t	0x narrower han a dye laser!

O atoms in an O₂ DC discharge

1-4 Torr O_2 in a 2cm diameter tube 5-40 mA current

Gas temperature measurements in a low pressure dc glow discharge

O₂ dc discharge 2 Torr – collisional broadening is negligible

Comparison to previous measurements

(T deduced from O₂ density : VUV absorption)

Good agreement within errors of previous measurements

Doppler-free TALIF spectroscpy

Doppler-free measurements of the fine structure components of O³P

O₂ dc discharge 2 Torr

Measurements of the collisional broadening coefficients in the Doppler-free configuration

The only literature value¹ γ = 0.42 cm⁻¹/atm in a O₂/CH₄ flame at 2500 K ¹Dyer et al., Opt. Lett. **14**, 12-14 (1989)

Pressure broadening in the μAPPJ (normal TALIF configuration)

Summary of HR TALIF

• atm pressure: -Pressure broadening

•Low pressure Doppler: Translational gas temperature

- low pressure sub-Doppler
 -Pressure broadening
 - -Fine structure
 - -Atomic physics

Conclusions

Comprehensive data set to test models of Oxygen plasmas

- -Atom densities and kinetics
- -Molecule densities and energy distributions
- -Electron (& negative ion) densities,
- -Gas temperature

Even for the simple case of pure diatomic gases, state-of-the-art models are unable to correctly predict trends with gas pressure

-Fundamental collision data is lacking or innaccurate
-Gas heating is very significant and remains to be fully understood
-Vibrational excitation can be significant and may play a large role

Future work: High resolution TALIF – in ICP reactor

-time and space resolution to understand relaxation kinetics

FUNDING :

