

Kinetic modelling of O₂ discharges

Vasco Guerra

Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Portugal

Reykjavik, September 2016

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Self-consistent kinetic model

Input

- Discharge operating parameters (p, R, P or n_e , ω)
- Wall temperature
- Gas temperature
- Collisional data (see IST-Lisbon database @ LXCat)

Output

- Sustaining electric field
- Electron energy distribution function (EEDF)
- Vibration distribution functions (VDF)
- Concentration of electronically excited states and ions

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Gas temperature
- Wave number and attenuation coefficient

Self-consistent model

The LoKI code

LoKI (LisbOn KInetics)

Electron kinetics (electron Boltzmann equation in the mixture O₂-O)

[L.L. Alves et al, Eur. Phys. J. D. 70 (2016) 1]

- Vibrational kinetics of $O_2(X \ {}^3\Sigma_g^-, v')$ molecules
- Chemical kinetics of O₂(a, b), O(³P,¹D), O₃ and O₃^{*}
- Ion kinetics of Ion kinetics of O_2^{+} , O^+ and O^-
- Electrons and ion transport + quasi-neutrality (self-consistent E/N)
 - [V. Guerra and J. Loureiro, Plasma Sources Sci. Technol. 8 (1999) 110]

- Usually treated as a separate module
- No conceptual problem in coupling gas phase and surface kinetics
 - [V. Guerra et al, J. Phys D: Appl. Phys. 47 (2014) 224012]

[V. Guerra and D. Marinov, *Plasma Sources Sci. Technol.* **25** (2016) 045001]

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

The LoKI workflow (stationary case)

In this lecture

Illustrations

• Vibrationally excited O₂ (cf. previous lecture by J.P. Booth!)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- O₃ kinetics in low-pressure discharges
- A glimpse at surface kinetics

#1 Vibrationally excited $O_2(X \ ^3\Sigma_g^-, v')$

In collaboration with

 J.P. Booth, M. Foucher, D. Marinov, A. Gibson, O. Guaitella (LPP)

- A. Annušová (Comenius Univesity at Bratislava)
- M.Lino da Silva (IPFN, IST)
- B. Lopez (Univ. Illinois at Urbana)

Vibrationally excited O_{2}

 Recent experiments have revealed highly excited O₂(X, v) in in pure O₂ ICP and DC discharges

[M. Foucher et al, Plasma Sources Sci. Technol. 24 (2015) 042001]

- The challenge: develop a detailed $O_2(X, v)$ kinetics
 - Updated rates for V-V and V-T transfers in collisions with O2

- Updated rates for V-T transfers in O₂-O collisions
- Updated rates for e-V processes
- Description of e-dissociation from v-levels

Vibrational kinetics of $O_2(X)$

- VT O₂-O₂: $O_2(X, v) + O_2 \rightleftharpoons O_2(X, v-1) + O_2$
- VV $O_2 O_2$: $O_2(X, v) + O_2(w) \rightleftharpoons O_2(X, v-1) + O_2(w+1)$

[C. Coletti and G.D: Billing, Chem. Phys. Lett. 356 (2002) 14]
 [M. Lino da Silva et al, Chem. Phys. Lett. 531 (2012) 28]

- VT O₂-O: $O_2(X, v) + O \Rightarrow O_2(X, v') + O$ [F. Esposito et al, Chem. Phys. **351** (2008) 91]
- e-V: $e + O_2(X, v) \rightleftharpoons e + O_2(X, w)$
- e-D: $e + O_2(X, v) \rightarrow e + O + O$
- e-A: $e + O_2(X, v) \rightarrow O + O^-$

[V. Laporta et al, Plasma Sources Sci. Technol. 22 (2013) 025001]
[R. Celiberto et al, Open Plasma Phys. J. 7 (2014) 33]

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• Wall: $e + O_2(X, v) \rightarrow e + O_2(X, v-1)$

Results: O₂ DC discharge

- Experiments by M. Foucher, D. Marinov, O. Guaitella and J.P. Booth
- e-V + V-T O₂-O
- The good agreement is extended to other values of *I*, *p* and to ICP
- For lower pressures $e + O_2(X, v) \rightarrow e + O + O$ becomes important

Results: O₂ ICP discharge

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 - のへで

Results: Influence of the EEDF

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - シッペ

In collaboration with

D. Marinov, O. Guaitella, J.P. Booth A. Rousseau (LPP)
 [D. Marinov et al, Plasma Sources Sci. Technol. 22 (2013) 055018]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Motivation

- Ozone kinetics seems quite well established at atmospheric pressure
- What can we learn at lower pressures?
 - Surface processes (O₃ formation at the wall)
 - Role of vibrationally excited ozone (O₃^{*})
- Ozone formation at the wall
 - Jansen and Tuzson: "Isotope Evidence for Ozone Formation on Surfaces"
 - [J. Phys. Chem. A 114 (2010) 9709]
 - Lopaev et al $\gamma(O_3)$ increases with pressure: $\sim 10^{-3}$ at 10 Torr; $\sim 5 \times 10^{-4}$ at 5 Torr [*J. Phys. D: Appl. Phys* (2011) **44**]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Motivation (continued)

Vibrationally excited ozone

- Rawlings *et al*: O_3^* is mainly formed on the asymmetric stretching mode ν_3 (00 ν)

[J. Geophys. Res. 90 (1985) 283]

- Eliasson et al 1987, Eliasson and Kogelschatz 1990
 - $\cdot \ O_2 + O_2 + O \rightarrow O_3 + O_2$ produces O_3 mainly in an excited state
 - $\cdot \ O_3^*$ decreases the absolute value of $[O_3]$
 - O₃^{*} increases the characteristic time for ozone formation [*J. Phys. D: Appl. Phys.* **20** (1987) 1421]

- Lopaev et al 2011: Model with 5 vibration levels of O₃

The system under study

Experiment

- DC discharge with short pulses (~ 1 ms)
- Silica tube, R=1cm, p=1-5 Torr
- Time-resolved measurements of [O] (TALIF)
- Time-resolved measurements of [O₃] (UV absorption)
- Modelling
 - Input: $p, I, R, \Delta t, T_g = 300 \text{ K}$
 - One effective vibrationally excited level O₃*
 - Collision rates taken essentially for the (001) level

- 2/3 of ${\it O}_2 + {\it O}_2 + {\it O} o {\it O}_3 + {\it O}_2$ produce ${\it O}_3^*$

Results: O₃ molecules

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Results: role of O_3^* molecules

Results: species concentrations

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

Results: $\gamma(O_3)$

p=1 Torr: $\gamma(O_3) < 10^{-5}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Results: $\gamma(O_3)$

p=5 Torr: $\gamma(O_3) < 10^{-4}$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

In collaboration with

- D. Marinov (LPP)
- C. Teixeira (IPFN, IST)

[V. Guerra and D. Marinov, *Plasma Sources Sci. Technol.* **25** (2016) 045001]

Modelling surface kinetics

- Macroscopic description
- Atomic scale simulations
 - [M. Rutigliano et al, PSST 23 (2014) 045016]
 - [A. Bogaerts et al, J. Phys. D: Appl. Phys. 44 (2011) 174030]
 - [E.C. Neyts and A. Bogaerts, J. Phys. D: Appl. Phys. 47 (2014) 224010]
 - Application to realistic molecule formation on silica (under plasma conditions) is still difficult
 - Coupling with complex gas-phase chemistry unpractical
- Mesoscopic description
 - "coarse-grained" description of the surface
 - lacks predictive power
 - \Rightarrow the best approach for our purpose!

Mesoscopic descriptions

- Deterministic approach
 - reaction-rate differential equations

[Y.C. Kim and S. Boudart, Langmuir 7 (1991) 2999]
[V. Guerra 2007, IEEE Trans. Plasma Sci. 35 (2007) 1397]
[D.V. Lopaev et al, J. Phys. D: Appl. Phys. 44 (2011) 015201]

- Stochastic kinetic (dynamical) Monte Carlo
 - exact and simple to implement
 - describe fluctuations
 - probabilities may depend on local configurations
 - good treatment of physisorbed species
 - bridge the gap between MD and simpler models
 - *n*-fold way (BKL) algorithm

[V. Guerra and D. Marinov, *Plasma Sources Sci. Technol.* **25** (2016) 054001]

Kinetic Monte Carlo in a nutshell

• Simulate the *time-evolution of the system* without dealing with the *master equation* directly

$$\frac{\partial P(\sigma,t)}{\partial t} = \sum_{\sigma'} \left[W(\sigma' \to \sigma) P(\sigma',t) - W(\sigma \to \sigma') P(\sigma,t) \right]$$

- Generate "what, where, when"
- *n*-fold way (BKL algorithm)
 [A.B. Bortz, M.H. Kalos and J.L. Lebowitz, *J. Comput. Phys.* 17 (1975) 10]
 [D.T. Gillespie, *J. Phys. Chem.* 81 (1977) 2340]
- Time increment selected randomly from an exponential distribution with parameter $\lambda = \sum_{i} n_{i}r_{i} = \sum_{i} \lambda_{i}$

The *n*-fold way (BKL) algorithm

- chose the next event type, e_j $\left(\sum_{i=1}^{j-1} \lambda_i < rand \times \lambda \le \sum_{i=1}^j \lambda_i\right)$
- chose the site, from the list of possible sites for e_j
- calculate the time increment and update the system
 [A.B. Bortz, M.H. Kalos and J.L. Lebowitz, J. Comput. Phys. 17 (1975) 10]
 [D.T. Gillespie, J. Phys. Chem. 81 (1977) 2340]
 [V. Guerra and D. Marinov, Plasma Sources Sci. Technol. 25 (2016) 054001]
- A new variant: the BKL* algorithm
 - θ_f is quite small $(10^{-7} 10^{-4})$
 - huge grids may be necessary in the simulations
 - keeping track of $[F_v]$ is computationally very expensive
 - modification of the BKL algorithm: find the site with a null-event scheme!

 \Rightarrow can be up to 20% faster!

The *n*-fold way (BKL) algorithm

- chose the next event type, e_j $\left(\sum_{i=1}^{j-1} \lambda_i < rand \times \lambda \le \sum_{i=1}^{j} \lambda_i\right)$
- chose the site, from the list of possible sites for e_i
- calculate the time increment and update the system
 [A.B. Bortz, M.H. Kalos and J.L. Lebowitz, J. Comput. Phys. 17 (1975) 10]
 [D.T. Gillespie, J. Phys. Chem. 81 (1977) 2340]
 [V. Guerra and D. Marinov, Plasma Sources Sci. Technol. 25 (2016) 054001]
- A new variant: the BKL* algorithm
 - θ_f is quite small $(10^{-7} 10^{-4})$
 - huge grids may be necessary in the simulations
 - keeping track of $[F_v]$ is computationally very expensive
 - modification of the BKL algorithm: find the site with a null-event scheme!
 - \Rightarrow can be up to 20% faster!

The *n*-fold way (BKL) algorithm flowchart

Transition rates

- Desorption: $r_d = \nu_d \exp(-E_d/kT_w)$
 - $u_d \sim 10^{15} \ {
 m s}^{-1}$
 - $E_d \sim 0.5$ eV (~ 50 kJ/mol)

• Adsorption: $r_f = k'_f \phi_A / [F]$, $r_s = k'_s \phi_A / [S]$

Credits: D. Marinov

- $[F] \sim 10^{15} \text{ cm}^{-2}$; $[S] \sim 10^{13} \text{ cm}^{-2}$ - $k'_{\epsilon} \sim 1$;
- Recombination: $P_R = \exp(-E_R/kT_w)$
 - $E_R \sim 0.2 \text{ eV} (\sim 20 \text{ kJ/mol})$
- Surface diffusion: $r_D = \nu_D \exp(-E_D/kT_w)$
 - $\nu_d \sim 10^{13}~{
 m s}^{-1}$
 - $E_D \sim E_d/2$

The transition rates can differ by 10 orders of magnitude!

O recombination in O_2

$$\begin{array}{ll} (1) & O+F_v \rightarrow O_f \\ (2) & O_f \rightarrow O+F_v \\ (3) & O+S_v \rightarrow O_s \\ (4) & O+O_s \rightarrow O_2+S_v \\ (5) & O_f+S_v \rightarrow F_v+O_s \\ (6a) & O_f+O_s \rightarrow O_2+F_v+S_v \\ (6b) & O_f+O_f \rightarrow O_2+F_v+F_v \end{array}$$

$$\begin{split} [F] &= 1.5 \times 10^{15} \text{ cm}^{-2} \\ E_d &= 30 \text{ kJ/mol}; \ \nu_d &= 10^{15} \text{ s}^{-1} \\ [S] &= 3 \times 10^{13} \text{ cm}^{-2} \\ E_R &= 17.5 \text{ kJ/mol} \\ E_D &= E_d/2; \ \nu_D &= 10^{13} \text{ s}^{-1} \\ E_R &= 17.5 \text{ kJ/mol} \\ E_R &= 0 \end{split}$$

• At steady-state:

$$\gamma = 2\left(\frac{\theta_s(r_4 + \theta_f r_{6a})[S] + \theta_f \theta_f r_{6b}[F]}{\phi_O}\right) = \gamma_{ER} + \gamma_{LH}^s + \gamma_{LH}^f$$

 γ^f_{LH} may be dominant at intermediate pressures (10-50 Torr) [D. Lopaev et al, J. Phys. D: Appl. Phys. 44 (2011) 015201]

γ_O vs T_W

⊽ [J.C. Greaves and J.W. Linnett, Trans. Faraday Soc. 55 (1959) 1355]

・ロト ・聞ト ・ヨト ・ヨト

э

1.0

0.8

0.6

R5

DD

KMC

nal coverage θ_s

real

э

1E-4

n rate/ site·m⁻²s

1x10²²

(日)、

 R_2 : thermal desorption R_5 : surface diffusion

(日)、

< ∃→

ł

O recombination with formation of O_2 and O_3

・ロト・日本・モト・モート ヨー うへで

[Lopaev et al 2011]: $E_d^{O_2} \simeq 18.3 \text{ kJ/mol}$; $E_d^O \simeq 31.6 \text{ kJ/mol}$

Recombination probability

 $[O_2] = 5 \times 10^{17} \text{ cm}^{-3}$ $[O] = 5 \times 10^{15} \text{ cm}^{-3}$

 $\gamma_{LH}^{O_2}$ (~ 3 × 10⁻⁵) is about one order of magnitude lower than in [Lopaev *et al* 2011] [D. Marinov *et al*, *PSST* 22 (2013) 055018]: $\gamma_{LH}^{O_2} < 10^{-4}$ at p = 5 Torr

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Conclusions

- Modelling constitutes a powerful tool to understand, predict and optimize the plasma behaviour
- A comprehensive kinetic model has been developed to study oxygen discharges ... associated with the LoKI simulation tool
- Oxygen exhibits a highly excited VDF, as a result of significant e-V rates

"But to what purpose / (...) / I do not know."

- Vibrationally excited ozone plays an important role in O_3 kinetics
- Formation of ozone at surfaces could not be established at the present conditions
- Upper limits for $\gamma(O_3)$ were established at 10^{-5} and 10^{-4} for p = 1 and 5 Torr, respectively, in good agreement with [Lopaev *et al* 2011]

Conclusions (continued)

- Powerful Kinetic Monte Carlo algorithms are available to simulate surface kinetics and coupled gas phase and surface chemistries
- A variant of the *n*-fold way algorithm was used to investigate systems with rates varying over 10 orders of magnitude (!)
- O recombination on silica:
 - reactions involving physisorbed O and O_2 dominate the surface kinetics
 - the complex behaviour of γ_O with T_W was interpreted
 - O_3 formation on surfaces was described, in fair agreement with experimental data
- ⇒ Coupled with MD, Dynamical Monte Carlo methods constitute a powerful tool to simulate surface processes up to large space/time scales
 - Near future: explore the impact of a distribution of reactivity

ICPIG 2017 @ Lisboa: you just don't want to miss it!

