## Effect of "Hot" Atoms on Active Species Production in High-Voltage Pulsed Discharges

#### Nikolay Aleksandrov, Alexander Ponomarev, <u>Andrey Starikovskiy</u>



Oxygen Plasma Kinetics Workshop Reykjavik 2016



## **Plasma Technologies for Aerospace**



#### **Nonequilibrium Plasma Aerodynamics**



Hypersonic Drag Reduction



Plasma Assisted Combustion



Internal Aerodynamics





External Aerodynamics



Physics of Nonequilibrium Systems Laboratory

#### **Propulsion Efficiency and Operating Regimes for Variety of Flight Systems**











Airbreathing and Rocket Vehicle

Flight Envelopes

Mach Number

Physics of Nonequilibrium Systems Laboratory

Propulsion Efficiency (lsp-sec)

## Short Time Scale Chemistry: Non-equilibrium Regimes



#### **Cross-sections Available**

| Atmospheric | Saturated | Unsaturated | Oxygenated  | Isomers     |
|-------------|-----------|-------------|-------------|-------------|
|             |           |             |             |             |
|             |           |             |             |             |
| N2          | CH4       | C2H2        | СО          | iso-butane  |
| 02          | C2H6      | C2H4        | СНЗОН       | iso-propane |
| CO2         | C3H8      | C3H6        | C2H5OH      | neo-pentane |
| H2O         | C4H10     |             | CH3OCH3 DME |             |
| 03          | C5H12     |             |             |             |
| Ar          | H2        |             |             |             |
| N2O         |           |             |             |             |





# Decreasing of Ignition Delay Time -1994



#### **PAC Pathways: C<sub>2</sub>H<sub>4</sub>-air**



#### **PAC Pathways: C<sub>2</sub>H<sub>4</sub>-air**



#### **PAC Pathways: C<sub>2</sub>H<sub>4</sub>-air**



#### Electron Energy Distribution in Discharge Plasmas



#### Plasma Assisted Ignition at Low E/n



#### **Energy Cost of Radicals Production at Different Nitrogen Concentrations**



Physics of Nonequilibrium Systems Laboratory

#### Electron Energy Distribution in Discharge Plasmas



## **Vibrational Energy Distribution**





## Chemical Reactions with Excited Reagents



## [H<sub>2</sub>O], cm<sup>-3</sup> Hydrogen Oxidation Rate



#### Electron Energy Distribution in Discharge Plasmas



#### Pulse Current Dynamics – Shock Tube $C_2H_6:O_2:N_2:Ar = 2:7:28:63$



 $f(v,\theta) = \sum_{l=0}^{\infty} f_l(v) P_l(\cos\theta) \approx f_0(v) + f_1(v) \cos\theta \qquad V_{\theta} / V_{\mathsf{m}} \ll \mathbf{1}$ 

#### **Discharge Energy Comparison** $C_2H_6:O_2:N_2:Ar = 2:7:28:63$



## **Radicals Production in Discharge** CH<sub>4</sub>-O<sub>2</sub>-Ar mixture



#### Ignition Delay Time: Methane-Containing Mixture



## Pentane-Oxygen and Methane-Air Plasma Assisted Ignition





#### Electron Energy Distribution in Discharge Plasmas



## Ionic Oxidation Mechanisms: Low Energy Thresholds

 $\begin{array}{ll} O_2 + {\bf e}^- + {\bf M} \to O_2^{-+} + {\bf M} & \\ {\bf H}_2 + {\bf O}_2^{--} \to {\bf OH}^- + {\bf OH} & k = 0.4 \times 10^{-10} \\ OH + {\bf H}_2 \to {\bf H}_2 O + {\bf H} & \\ {\bf OH}^- + {\bf H} \to {\bf H}_2 O + {\bf e}^- & k = 1.4 \times 10^{-9} \\ {\bf H} + O_2 + {\bf M} \to {\bf HO}_2 + {\bf M} & \\ {\bf OH}^- + {\bf HO}_2 \to {\bf H}_2 O + {\bf O}_2 + {\bf e}^- & k = 1.0 \times 10^{-9} \end{array}$ 

I.N.Kosarev, A.Yu.Starikovskii. Mechanism for Electric Breakdown in a Chemically Nonequilibrium System and the Influence of the Chain Oxidation Reaction in an H2–Air Mixture on the Breakdown Threshold. Plasma Physics Reports, 2000. V.26. N.8. P.701.

### Plasma Decay Time at T = 295 K



Systems Laboratory

#### **Mechanisms of Plasma/Flame Interaction**

1. Heating



2. Turbulization





3. Momentum Transfer



4. Electrons/Ions Diffusion/Drift

5. Excitation, Dissociation, Ionization

Physics of Nonequilibrium Systems Laboratory

#### **SDBD Discharge and Fast Heating**

336,0

335,5

336,5

Wavelength, nm

337,0



Gate = 0.5 nsTime shift between frames is 1 ns The movie duration is 41 ns **Impulse Parameters** Voltage Current 0,15  $V = 14 \, kV$ 0,10 0,05 t<sub>1/2</sub> = 20 ns Current, A 0,00 -0,05 Frequency = 1 kHz-0,10 -0,15 Velocity = 0.4 mm/ns -0,20 30 50 20 Time. ns 1-0-30 ns 2-1000-1030 ns Intensity, ar.u. 410 400 390 0,1 380 دی | Temperature, K 370 360

350

340

330 320

310

300

10 Energy input, mJ

 $-\Delta - \Delta T = 1 \mu s$ 

Discharge Phase

12

25

20

<sup>10</sup> Voltage, kV

## Fractional Electron Power Transferred Into Heat in N<sub>2</sub>:O<sub>2</sub> Mixtures



#### Heating Rate Calculated for Different Electric Fields in Dry Air at Normal Conditions



Flitti et al., Eur. Phys. J. Appl. Phys. 45, 21001 (2009)

# Mechanism of Fast Heating in Discharge Plasmas (high E/N)

 $e + O_2^+ \rightarrow O + O^* + \Delta E$  $O_2^- + O_2^+ \rightarrow O_2 + O_2 + \Delta E$  $e + O_4^+ \rightarrow O_2 + O_2 + \Delta E$ 

High (> 200 Td) E/N:

electron-ion and ion-ion recombination kinetics



## **Potential Energy Curves of Molecular Hydrogen**



 $H_2(b^3\Sigma_u)$ , 8.9 eV  $\sigma_{max}$  = 0.33 A<sup>2</sup> (17 eV)

 $H_2(a^3\Sigma_g)$ , 11.8 eV  $\sigma_{max} = 0.12 A^2 (15 eV)$ 

$$H_2(B^1 \Sigma_u)$$
, 11.3 eV  
 $\sigma_{max}$  = 0.48 A<sup>2</sup> (40 eV)

$$H_2(C^1\Pi_u)$$
, 12.4 eV  
 $\sigma_{max} = 0.40 A^2 (40 eV)$ 



## Potential Energy Curves of Molecular Oxygen



## Potential Energy Curves of Molecular Nitrogen



 $N_2(A^3\Sigma_u^+)$ , 6.2 eV  $\sigma_{max} = 0.08 A^2 (10 eV)$ 

N<sub>2</sub>( $B^3\Pi_g$ ), 7.35 eV  $\sigma_{max}$  = 0.20 A<sup>2</sup> (12 eV)

N<sub>2</sub>( $C^3 \Pi_u$ ), 11.03 eV  $\sigma_{max}$  = 0.98 A<sup>2</sup> (14 eV)

## Mechanisms of production of "hot" atoms in discharge plasmas

A.Yu. Starikovskiy, "Hydrogen plasma assisted ignition by NS discharge behind reflected shock wave" ,45th AIAA Plasmadynamics and Lasers Conference, Paper AIAA 2014-2245 (2014)

 $\begin{array}{l} \textbf{Dissociation via } \textbf{N}_2 \text{ excitation} \\ \textbf{e} + \textbf{N}_2 \rightarrow \textbf{e} + \textbf{N}_2(\textbf{C}) \\ \textbf{N}_2(\textbf{C}) + \textbf{O}_2 \rightarrow \textbf{N}_2 + 2\textbf{O}(^3\textbf{P},^1\textbf{D}) + 3.9 \text{ eV} \\ \textbf{N}_2(\textbf{C}) + \textbf{H}_2 \rightarrow \textbf{N}_2 + 2\textbf{H}(^1\textbf{S}) + 6.5 \text{ eV} \end{array}$ 

## HI UV absorption. Okabe, 1984



Fig. V-5. Absorption coefficients of H1 and contribution of the transitions to the absorption continuum in the ultraviolet region. Solid curve, absorption coefficients  $\epsilon$  of H1 in units of 1 mol<sup>-1</sup> cm<sup>-1</sup> base 10 at room temperature. Reprinted with permission from B. J. Huebert and R. M. Martin, *J. Phys.* Chem. 72, 3046 (1968). Copyright by the American Chemical Society. Dashed curves, absorption coefficients of the transitions  ${}^{3}\Pi_{1}{}^{-1}\Sigma^{+}$ ,  ${}^{3}\Pi_{0}{}^{-1}\Sigma^{+}$ , and  ${}^{1}\Pi{}^{-1}\Sigma^{+}$ . The  ${}^{3}\Pi$ , and  ${}^{1}\Pi$  states dissociate into H + 1( ${}^{2}P_{3/2}$ ), while the  ${}^{3}\Pi_{0}{}^{+}$  state dissociates into H + 1( ${}^{2}P_{1/2}$ ). The arrows indicate four incident wavelengths (2662, 2537, 2281, and 1850 Å) at which the ratios of 1( ${}^{2}P_{1/2}$ ) to 1( ${}^{2}P_{3/2}$ ) are obtained. From Clear et al. (219) reprinted by permission. Copyright 1975 by the American Institute of Physics.

Fig. V-6. Potential energy curves of H1. From Wilson and Armstrong (1051). Originally from Mulliken, *Phy. Rev.* 51, 310 (1937). Reprinted by permission. Copyright 1937 by the American Physical Society.



$$HI \xrightarrow{hv} H + I \tag{V-8}$$

$$H + HI \rightarrow H_2 + I \tag{V-9}$$

$$2I + M \rightarrow I_2 + M \tag{V-10}$$

The excess energy beyond that required to break the H -1 bond is 3.65 eV at 1849 Å. This excess energy appears primarily as the kinetic energy of H

The effect of "hot" atoms on chemical reactions

H + O<sub>2</sub> 
$$\rightarrow$$
 O + OH  
 $k_{eq}(T = 300 \text{K}) = 2.5 \times 10^{-21} \text{ cm}^3/\text{s}$   
 $k_h = 1.6 \times 10^{-10} \text{ cm}^3/\text{s}$ 

$$O + H_2 \rightarrow H + OH$$
  
 $k_{eq}(T = 300K) = 9.3 \times 10^{-18} \text{ cm}^3/\text{s}$   
 $k_h = 1.5 \times 10^{-10} \text{ cm}^3/\text{s}$ 

The effect is important only when energy degradation of "hot" atoms is slow!

Monte Carlo simulation of energy degradation of "hot" atoms

Simultaneous consideration of

- "cooling" of "hot" atoms in elastic collisions

and

-chemical reactions.

**Other inelastic processes were neglected** 

# Determination of cross sections for scattering of "hot" atoms

**Elastic collisions:** calculations in quasi-classical approach using Lennard-Jones interaction potential



 $\sigma(i,j) = [\sigma(i,i) + \sigma(j,j)]/2 \qquad \varepsilon_{m}(i,j) = [\varepsilon_{m}(i,i) \cdot \varepsilon_{m}(j,j)]^{1/2}$ 

## Determination of cross sections for scattering of "hot" atoms

**Elastic collisions:** calculations in quasi-classical approach using Lennard-Jones interaction potential



## Determination of cross sections for scattering of "hot" atoms

**Chemical reactions:** adjustment of cross sections to fit available data for rate constants in a wide range of gas temperatures



$$\sigma(\varepsilon) = \begin{cases} 0, \varepsilon \leq L_0 \\ \pi R_0^2 \left( 1 - \frac{E_0}{\varepsilon} \right), \varepsilon > E_0 \end{cases}$$
$$k(T) = \left( \frac{8\pi kT}{\mu} \right)^{1/2} R_0^2 \exp(-E_0/kT)$$

#### **Cross sections for H atom scattering**



#### **Cross sections for O atom scattering**



#### **Cross sections for OH scattering**



#### **Energy degradation of "hot" H atoms**



#### **Energy degradation of "hot" O atoms**



### **Energy distributions for H and O atoms**



Stoichiometric  $CH_4:O_2 = 1:2$  mixture. Initial energy of H and O atoms is 3 eV.

## Amount of active species generated by hot H atoms in $CH_4:O_2$ mixture ( $\phi = 1$ )



## Amount of active species generated by hot O atoms in $CH_4:O_2$ mixture ( $\phi = 1$ )



## Amount of active species generated by hot O and H atoms in $CH_4$ :air mixture ( $\phi = 1$ )



Initial O atom energy, eV

Amount of active species generated by hot O and H atoms in stoichiometric H<sub>2</sub>:O<sub>2</sub> mixture at 300 K as a function of their initial energy



#### Role of translationally-hot H atoms in ignition of lean $H_2$ - $O_2$ mixture. P = 1 atm.



#### Role of translationally-hot H atoms in ignition of stoichiometric $H_2$ - $O_2$ mixture. P = 1 atm.



Τ, Κ

#### Role of translationally-hot H atoms in ignition of stoichiometric $H_2$ -air mixture. P = 1 atm.



Τ, Κ

## Role of translationally-hot atoms in ignition of stoichiometric methane-air mixture. P = 1 atm.



Τ, Κ

## **Low-temperature Ignition**



## **Low-temperature Ignition**



## **Low-temperature Ignition**



## **Low-temperature Oxidation**



Formaldehyde Hydrogen Methanol

## **Low-temperature Oxidation**



## **Low-temperature Oxidation**



## Conclusions

- Using Monte Carlo simulation, energy degradation of "hot" H and O atoms in  $H_2:O_2$ ,  $CH_4:O_2$  and  $CH_4:air$  mixtures at room gas temperature was studied taking into account elastic collisions and chemical reactions.
  - Energy degradation is longer for H atoms in  $CH_4$ -containing mixtures and in lean  $H_2:O_2$  mixtures, whereas degradation time of O atoms is much shorter.
- When energy degradation of "hot" atoms is long, the amount of active species produced in a high-voltage discharge can be increased and active species composition is changed. This can lead to a noticeable decrease in the threshold temperature of plasma-assisted ignition.