Plasma Reactions of O_n High Energy Species – O, $O_2(v)$, $O_2(a \ ^1\Delta_g)$, and O_3

O₂ plasma kinetics workshop Reykjavik Sep 2016

Albert A. Viggiano Space Vehicles Directorate Air Force Research Laboratory

- Brief introduction to ionospheric chemistry
 - Reasons for energetic oxygen studies

- Techniques for O, $O_2(v)$, $O_2(a \ ^1\Delta_g)$, and O_3
- Data examples for each reactant

Summary of Main Ionospheric Chemistry of N and O species

Negative Ion Reactions in the Atmosphere

Numerous places reactive oxygen species are important

For more information on atmospheric ion chemistry Chem. Rev. **115**, 4542–4570 (Feb 2015)

Hypersonic Plasma Effects

Combustor Test @ Mach 2

- AJAX hypersonic concept vehicle utilizes air plasmas to aid combustion
- Plasma Blackout of C³I, GPS Navigation

Selected Ion Flow Tube (SIFT) for O₂(v)

- T Range 85 550 K
- Pressure Range ~0.3 1 Torr
- Kinetic energy range 0.01 1eV

Important:

Translational energy distribution is Quasi-Boltzmann

High Temperature Flowing Afterglow (HTFA)

Ceramic tube - 1800 K Quartz tube - 1400 K

10

10

Rate Constant (cm ³ s⁻¹)

Data from HTFA and Drift Tube → Internal Energy Dependence

Most Important Ionospheric Reactions

N, O Reactions Studied at AFRL by this technique

See: Adv. in Gas Phase Ion Chem. vol. 4, p 85-136 (Dec 2001)

- $O^+ + O_2 \rightarrow O_2^+ + O \ (\leq 1800 \text{ K})$
- $O^+ + N_2 \rightarrow NO^+ + N$ (≤ 1600 K) most important reaction in ionosphere
- O⁺ + NO → NO⁺ + O (≤ 1400 K)
- $O_2^+ + NO \rightarrow NO^+ + O (\leq 1400 \text{ K})$
- $N_2^+ + O_2 \rightarrow O_2^+ + N_2 \ (\le 1800 \text{ K})$
- N⁺ + O₂ \rightarrow NO⁺, O₂⁺, O⁺ (\leq 1400 K) also product sates of NO⁺
- $N_n^+ + NO \rightarrow products (\leq 1400 \text{ K})$
- $N_3^+ + O_2 \rightarrow NO^+$; NOO⁺ ($\leq 1400 \text{ K}$)
- Chemistry of NOO⁺
- $O_3^+ + N_2, O_2 \rightarrow \text{products}$

Ionospheric Data (with E. Mishin, B. Burke)

MISHIN ET AL.: STORMTIME SAPS-RELATED TROUGHS

Ionospheric Depletion Data

Dependence on electron temperature was not expected

N⁺ + O₂ Chemistry Studied

- Rate constants to 1400 K
 - Rotational and translational energy do little to change rate or products
 - v = 1 goes at k_{langevin}
- Three products formed
 - ~50% O₂⁺ (CT)
 - ~40% NO⁺
 - − ~10% O⁺
- All NO⁺ is ground state (¹Σ) even though NO⁺ (³Σ) is exothermic (300- 550 K)

Rotational + Translational Energy (eV)

Instruments for ion and electron molecule studies of O₃

Atmospheric Ozone Reactions J. Phys. Chem. A; 106(6), 997-1003 (Jan 2002)

TABLE 1: Reaction Rate Constants for Reactions of Ozone at 300 K Measured with the Selected Ion Flow Tube (SIFT)^a

reaction	products	$k;[k_{\rm c}] (10^{-9} {\rm cm}^3 {\rm s}^{-1})$	branching fractions	$-\Delta H$ kJ/mol
$O^- + O_3 \rightarrow$		1.7;[1.5]		
	$O_3^- + O$		0.81	63
	$O_2^- + O_2$		0.19	294
$O_2^- + O_3 \rightarrow$	$O_3^- + O_2$	1.3;[1.2]	1.00	160
$OH^- + O_3 \rightarrow$		1.4;[1.4]		
	$O_3^- + OH$		0.90	28
	$HO_2^- + O_2$		0.08	100
	$O_2^- + HO_2$		0.02	47
$NO_2^- + O_3 \rightarrow$		0.18;[1.1]		
	$NO_{3}^{-} + O_{2}$		0.99	264
	$O_3^- + NO_2$		0.01	-14
$NO_3^- + O_3 \rightarrow$	no reaction	<0.005;[0.97]		
	$NO_2^- + 2O_2$			21
$CO_3^- + O_3 \rightarrow$	no reaction	<0.001;[0.98]		
	$O_2^- + CO_2 + O_2$			98
$CO_4^- + O_3 \rightarrow$		0.46;[0.93]		
	$O_3^- + CO_2 + O_2$		0.93	81
	$CO_{3}^{-} + 2O_{2}$		0.07	108

FIG. 2. Electron attachment rate coefficient versus temperature. Present results (\bullet) and swarm upper limit of Fehsenfeld *et al.* [3] (\Box) are true thermal values. The remaing data are plotted versus electron temperature. The drift tube results of Stelman *et al.* [4] (dashed line) are derived from a least squares fit of the combined data for 200 and 300 K rovibrational temperature ozone reacting with energetic electrons. The electron beam results of Skalny *et al.* [8] (\bigcirc) and Senn *et al.* [2] (solid line) were derived by those authors from measurements of the reaction cross section for 300 K rovibrational temperature ozone with energetic electrons.

Phys. Rev. Lett. 91 DOI: 223201 -1-4 (Nov 2003). 1

Positive Ion - Atom Results

 $O_2^+ + N \rightarrow NO^+ + O$

 $\Delta H_r^0(0K) = -96.5 \text{ kcal/mol}$ (1)

 $N_2^+ + O \rightarrow NO^+ + N$

 $\Delta H_r^0(0K) = -70.6 \text{ kcal/mol}$ (2a)

 \rightarrow N₂ + O⁺

 $\Delta H_r^0(0K) = -45.2 \text{ kcal/mol (2b)},$

J. Chem. Phys. **142** DOI: 154305 (Apr 2015)

Negative Ion - Atom Results

$$\begin{split} O_2^- + N &\to NO_2 + e^-, \quad \Delta_r H^\circ = -4.11 \text{ eV}, \\ NO + O^-, \quad \Delta_r H^\circ = -2.39 \text{ eV}, \\ O_2^- + O &\to O_3 + e^-, \quad \Delta_r H^\circ = -0.66 \text{ eV}, \\ O_2^- + O^-, \quad \Delta_r H^\circ = -1.01 \text{ eV}, \\ O^- + N &\to NO + e^-, \quad \Delta_r H^\circ = -5.09 \text{ eV}, \\ O^- + O &\to O_2^- + e^-, \quad \Delta_r H^\circ = -3.71 \text{ eV}. \end{split}$$

J. Chem. Phys. **139**, 144302, doi: 10.1063/1.4824018 (Oct 2013)

Turbulent Ion Flow Tube

10-760 Torr 300-700 K Also for very slow rate constants

Figure 1. Mass spectrum taken at 35 Torr and 523 K.

J. Phys. Chem. A 110 11599-11601(Oct 2006)

- O₂(a ¹Δ_g) emissions at 1270 nm contribute to the IR airglow¹
- $O_2(a \ ^1\Delta_g)$ created in O_2 discharges²
 - Electron impact on O₂
 - $O_2(b \ ^1\Sigma_g^+)$ collisional quenching by O_2
- Affects oxidation chemistry
 - Materials processing³
 - Oxygen-iodine lasers⁴

¹Handbook of Geophys. & Space Environ., A.S. Jursa, ed. 1985. ³Jeong et al., Plasma Sources Sci. Technol. 7, 282-285 (1998)

$O_2(a \ ^1\Delta_g)$ in lonosphere D-region

 Reactions controlling e- concentrations in ionosphere influence radiowave propagation¹

Brasseur and DeBats, *JGR*, **91**, 4025 (1985)

¹Handbook of Geophys. & Space Environ., A.S. Jursa, ed. 198

- Large disparity in the literature values of the rate constants for O⁻ and O₂⁻ + O₂(a ¹Δ_g)
- $O_2^- + O_2(a^1\Delta_g)$
 - NOAA flowing afterglow (FA)¹⁰
 - Upschulte et al., FA¹¹

¹¹*JPC.* **98**, 837 (1994)

- $O^{-} + O_2(a^{-1}\Delta_g)$:
 - NOAA, FA
 - Upschulte et al., FA
 - Belostostky et al., plasma model
 - Stoffels et al., plasma model

2.0×10⁻¹⁰ cm³ s⁻¹

2.4×10⁻¹¹ cm³ s⁻¹

- 3.0×10⁻¹⁰ cm³ s⁻¹
- 3.3×10⁻¹¹ cm³ s⁻¹
- 1.9×10⁻¹⁰ cm³s⁻¹
- 1.3×10⁻¹⁰ cm³ s⁻¹

- Utilize newly designed $O_2(a \ ^1\Delta_g)$ emission detection scheme to re-measure the kinetics for the O^- , $O_2^- + O_2(a \ ^1\Delta_g)$ reactions from 200-700 K
- Calibrate detection setup vs. absolute standard
 - Settle the discrepancy in the literature values
- Expand the studies to other ion-molecule reactions with O₂(a $^{1}\Delta_{g}$)
- *J. Phys. Chem. A.* 111, 5218-5222 (June 2007) *J. Phys. Chem A* 112, 3040-3045 (Apr 2008)

SIFT with $O_2(a \ ^1\Delta_g)$ Detection Initial experiments

Glass wool: quenches most O atoms from discharge

<u>Typical % of total O₂ concentration in SIFT</u>: 9% O₂(a $^{1}\Delta_{g}$), 1% O, <1%O₃

$H_2O_2 + CI_2 + 2KOH \Rightarrow O_2/O_2(a) + 2KCI + 2H_2O$

Need to account for O, O₃ impurities

- $k = 6.6 \times 10^{-10} \text{ cm}^3 \text{ s}^{-1}$
 - 90% of collision rate constant ∴ very efficient
 - 3x higher than previous highest values
- Upshulte et al. FA experiments
 - Kinetics data showed fast and slow decay
 - Incorrectly assumed slow decay was correct
 - New bi-exponential fit shows fast decay = NOAA value
 - $-O_2$ source gas present in FA flow tube
 - Electrons present re-attach to O₂ ∴ lower apparent decay in FA measurements

- $k = 1.1 \times 10^{-10} \text{ cm}^3 \text{ s}^{-1}$
 - -12% of $k_{col}=9.0\times10^{-10}$ cm³ s⁻¹

– 2-3x < previous values (even more – see T work)</p>

• New charge transfer product channel observed: $O^- + O_2(a^-\Delta_e) \rightarrow O_3 + e + 60 \text{ kJ mol}^{-1} <70\%$

 $\rightarrow O_2^- + O + e - 3 \text{ kJ mol}^{-1} > 30\%$

- New channel important pathway in low-pressure O₂ discharges where:
 - − O⁻ is primary ion
 - Three-body O_2^- formation negligible

Temperature Dependencies 200-700 K

- O⁻ rate constant at 298 K = 8.6×10^{-11} cm³ s⁻¹
- D-region is cold ∴ O⁻ rate constants are lower than previously assumed at low temperatures given positive T dependence

- Increased fraction of O⁻ converted to O₂⁻ at high temperatures increases conversion rate to electrons
 - Additional O₂⁻ rapidly converted to e⁻

Innovative techniques allow wide range of species studied

New techniques often yield unexpected results

Acknowledgments

In-house

Tom Miller

Skip Williams

Bob Morris

Sue Arnold

Nick Shuman

Shaun Ard

Oscar Martinez

Justin Wiens

Jenny Sanchez

Theory

E. Mishin - atmospheric modeling Jurgen Troe – statistical modeling Made possible by long term funding by AFOSR Molecular Dynamics (Berman)