Eðlisfræði péttefnis I

Dæmablað 1

Skilafrestur 2. September 2014 kl. 15:00

1. Density of atoms in silicon (10)

Consider the diamond structure of a Si crystal, for which the cubic lattice constant is $a=5.431 \AA$.
(a) Compute the distance, in \AA, between nearest-neighbor Si atoms in the crystal.
(b) Compute the distance, in \AA, between nearest-neighbor Si atoms in the (100), (110), and (111) planes of the Si crystal.
(c) Compute the density of atoms (atoms $/ \mathrm{cm}^{3}$) in the Si crystal.
2. Pökkun í kristalli (10)

Myndin að neðan sýnir pétt pökkuð plön tveggja teningsgrinda sem hafa sömu fjarlægð milli næstu granna d.
(a) Hverjir eru Miller vísar plananna og í hvaða grindum finnast pau.
(b) Hver er frumeindabéttleikinn (frumeind/einingarflatarmál) í hvoru plani fyrir sig.

3. Ionic crystal KF (10)

In a single molecule of KF , the equilibrium internuclear separation is $r_{0}=2.67 \AA$ and the cohesive energy ($-E_{\mathrm{i}}$) relative to seperated ions is $0.50 \mathrm{eV} /$ molecule smaller than the Coulomb attractive energy, because of overlap repulsion. Given that the electron affinity of of fluorine is $4.07 \mathrm{eV} /$ electron and that the first ionization potential of potassium is 4.34 volts, show that the energy necessary to separate the molecule into neutral atoms is $-0.945 E_{\mathrm{i}}$.
4. Ionic crystals (15)

We can use the form

$$
u(r)=\frac{\alpha e^{2}}{r}+\frac{C}{r^{m}}
$$

of the cohesive energy per ion pair to investigate the stability of the possible crystal structure an ionic crystal may assume. Assuming that the coupling constant C characterizing the contribution of the short-range repulsion is proportional to the coordination number Z, show that the equilibrium cohesive energy for different lattice types varies as $\left(\alpha^{m} / Z\right)^{1 /(m-1)}$, and use the values of the Madelung constant α in the table below to construct a table of relative stability according to the value of m. (Hint: First examine the case of large or small m.)

Crystal structure	Madelung constant, α
Cesium chloride	1.7627
Sodium chloride	1.7476
Zinchblende	1.6381

