Háskóli Íslands Haust 2015

Raunvísindadeild

Eðlisfræði

Eðlisfræði þéttefnis I

Dæmablað 10

Skilafrestur 10. November 2015 kl. 15:00

1. Drude model frequency dependence (10)

Use the equation

$$m\left(\frac{dv_{\rm D}}{dt} + \frac{v_{\rm D}}{\tau}\right) = -e\mathcal{E}$$

for the electron drift velocity $v_{\rm D}$ to show that the conductivity at frequency ω is

$$\sigma(\omega) = \sigma(0) \left(\frac{1 + j\omega\tau}{1 + (\omega\tau)^2} \right)$$

where $\sigma(0) = ne^2 \tau/m$.

(Próf Desember 2014)

2. Conduction electrons in a metal with a uniform static electric field (20)

A uniform static electric field E is established in a metal at uniform temperature with a conduction electron number density n and relaxation time τ . An electron is considered to undergo scattering at time t=0 and then again at time t. Answer the following questions applying Drude's theory of electrons in metals.

- (a) What is the average energy lost by the electron in the second collision?
- (b) What is the average energy loss of the electron per collision?
- (c) Consider a sample of cross-section area A and length L along which a current I is flowing. Using your above result, demonstrate the total power dissipated is $P = RI^2$ and provide an expression for R.

- (d) Suppose now that the metal has a uniform temperature gradient ∇T . The average energy of an electron at temperature T is $\mathcal{E}(T)$. Show that the temperature gradient is responsible for an extra term proportional to $\nabla T \cdot E$ in the average energy loss of an electron per collision and provide the expression of the proportionality constant.
- (e) Consider again a sample of cross-section area A and length L with an electric potential difference ΔV and a temperature difference ΔT maintained between the two ends. Assuming the electric potential and temperature gradients are parallel and uniform, find a relation between ΔV and ΔT so the average energy loss per scattering cancels. (This is the main idea behind the Seebeck effect observed for the first time in 1821: in a metal subject to a temperature gradient, an electric field establishes itself in a direction opposite to the temperature gradient. This behavior is exploited in thermocouples used for temperature difference measurements.)

3. The Kronig-Penney model (20)

Consider an electron in 1D in the presence of the periodic potential (Kronig-Penney model)

$$U(x) = \sum_{m=-\infty}^{\infty} U_0 \Theta(x - ma) \Theta(ma + b - x)$$

- (a) Restrict your attention to a single unit cell, and write down the boundary conditions for the wave function as required by Bloch's theorem.
- (b) Solve the Schrödinger equation by constructing $\psi(\mathbf{x})$ from plane waves and imposing suitable boundary conditions at x = 0, b, a. The results is a relation between the Bloch index k and the energy.
- (c) Take the limit $b \longrightarrow 0$, $U_0 \longrightarrow \infty$ with $U_0 b \longrightarrow W_0 \frac{\hbar^2 a^{-2}}{m}$. Show that the condition for the Bloch index simplifies to

$$\cos(ka) = \frac{W_0}{qa}\sin(qa) + \cos(qa)$$

where q is related to the eigenenergy \mathcal{E} via $q = (2m\mathcal{E}/\hbar^2)^{1/2}$.

- (d) Produce plots of the lowest two energy bands $\mathcal{E}_{nk}(n=0,1)$ in the limit of part
- (c) with a = 1, m = 1, $\hbar = 1$, and $W_0 = 0.5$.