Eðlisfræði þéttefnis I

Dæmablað 8

Skilafrestur 19. Október 2017 kl. 15:00

1. Líkan Einstein fyrir eðlisvarma – Einstein's model for specific heat (15)

Líkan Einstein fyrir þéttefni gefur jöfnu fyrir eðlisvarma

$$C_{\rm v} = 3N_0 k \left(\frac{\theta_{\rm E}}{T}\right)^2 \frac{\exp(\theta_{\rm E}/T)}{(\exp(\theta_{\rm E}/T) - 1)^2}$$

þar sem $\theta_{\rm E}=hv_{\rm E}/k.$ Stuðullinn $\theta_{\rm E}$ er nefndur hið einkennandi hitastig. Sýna skal

- (a) að fyrir há hitastig fæst lögmál Dulong-Petit.
- (b) að fyrir mjög lág hitastig fæst ekki T^3 lögmálið.

Einstein's model of solids gives the expression for the specific heat

$$C_{\rm v} = 3N_0 k \left(\frac{\theta_{\rm E}}{T}\right)^2 \frac{\exp(\theta_{\rm E}/T)}{(\exp(\theta_{\rm E}/T) - 1)^2}$$

where $\theta_{\rm E} = h v_{\rm E} / k$. The factor $\theta_{\rm E}$ is called the characteristic temperature. Show that

- (a) at high temperatures Dulong-Petit law is reproduced.
- (b) at very low temperatures the T^3 law is not given.
- (Próf desember 2016)

2. Electron gas in two dimensions (20)

We consider a two dimensional gas of electrons of mass m with N electrons confined to an area A so there is a density n = N/A of electrons per unit area.

(a) Express the Fermi wave vector magnitude $k_{\rm F}$ and the Fermi energy $\mathcal{E}_{\rm F}$ in terms of n

(b) Express the density of levels $g(\mathcal{E})$

(c) Write the Sommerfeld expansion for n and conclude as to the relation between the chemical potential μ and the Fermi energy $\mathcal{E}_{\rm F}$

(d) Obtain a relation between μ and $\mathcal{E}_{\rm F}$ directly from the relation

$$n = \int_{-\infty}^{\infty} \mathrm{d}\mathcal{E}g(\mathcal{E})f(\mathcal{E})$$

where $f(\mathcal{E})$ is the Fermi-Dirac occupation factor (Hint: proceed with the change of variable $x = e^{-(\mathcal{E}-\mu)/k_{\rm B}T}$). Write your result to the limit $k_{\rm B}T \ll \mathcal{E}_{\rm F}$.

(e) Comment on the difference between your answers to question (c) and (d).

3. Thermal motion and resistivity (10)

Show that if the random velocity of the electrons were due to thermal motion of a classical electron gas, the electrical resistivity would increase with the temperature as $T^{3/2}$.

4. Second Neighbor Diatomic Chain (10)

Consider a diatomic chain. In addition to the spring constant κ between neighboring masses, suppose that there is also a next nearest-neighbor coupling with spring constant κ' connecting equivalent masses in adjacent unit cells. Determine the dispersion relation for this system. What happens if $\kappa \gg \kappa'$?

5. Fermi velocity (10)

Estimate the ratio of the drift velocity to the Fermi velocity for a 2 mm^2 Cu wire carrying a 20 A current.