The High Power Impulse Magnetron Sputtering Discharge

Jón Tómas Guðmundsson

Science Institute, University of Iceland, Iceland
Department of Electrical and Computer Engineering, University of Iceland, Iceland
tumi@hi.is

49th Annual SVC Technical Conference, April 24. 2006
Introduction

- Magnetron sputtering discharges are widely used in thin film processing

- Applications include
 - thin films in integrated circuits
 - magnetic material
 - hard, protective, and wear resistant coatings
 - optical coatings
 - decorative coatings
 - low friction films
Introduction

- The demand for new materials and layer structures has lead to development of more advanced sputtering systems.
- One such sputtering system is the high power pulsed magnetron sputtering discharge (HPPMS).
- It gives high electron density and highly ionized flux of the sputtered material.
Introduction

- Introduction to magnetron sputtering and Ionized Physical Vapor Deposition (IPVD)
- High power impulse magnetron sputtering discharge (HiPIMS)
 - Power supply
 - Electron density
 - Plasma dynamics
 - Ionization fraction
 - Ion energy
 - Deposition rate
 - Applications

- Summary
Introduction

This work is a result of collaboration with

- Kristinn B. Gylfason (University of Iceland)
- Dr. Jones Alami (Linköping University, Sweden)
- Johan Bohlmark (Linköping University, Sweden)
- Dr. Arutiun Ehiasarian (Sheffield Hallam University, UK)
- Prof. Ulf Helmersson (Linköping University, Sweden)
- Dr. Martina Latteman (Linköping University, Sweden)
Planar Magnetron Sputtering Discharge

- Sputtering in a dc glow discharge is a slow process
- The planar magnetron was developed to enhance the sputtering and increase the deposition rate
- A typical planar magnetron discharge consists of a planar cathode (sputtering source or target) parallel to an anode surface
A magnet is placed at the back of the cathode target with the pole pieces at the center and perimeter. It generates magnetic field lines that enter and leave through the cathode plate. The magnetic field confines the energetic electrons near the cathode, where they undergo numerous ionizing collisions before being lost to a grounded surface.
A typical dc planar magnetron discharge operates at a pressure of 1 – 10 mTorr with a magnetic field strength of 0.01 – 0.05 T and at cathode potentials 300 – 700 V

Electron density in the substrate vicinity is in the range $10^{15} - 10^{16}$ m$^{-3}$
Planar Magnetron Sputtering Discharge

- Conventional magnetron sputtering processes suffer from fundamental problems such as
 - low target utilization
 - target poisoning
 - poor deposition rates for dielectric and ferromagnetic materials
 - target thermal load limits the available current
 - electrical instabilities or arcs cause process instability
 - low fraction of the sputtered material is ionized
Planar Magnetron Sputtering Discharge

- Several sputtering systems have been designed to overcome these obstacles.
- They include:
 - Pulsing the applied target voltage.
 - Additional ionization by a secondary discharge (rf or microwave).
 - Increased magnetic confinement.
 - Reshaping the cathode for more focused plasma (hollow cathode).
Ionized Physical Vapor Deposition (IPVD)

- In sputtering the majority of ions are the ions of the inert gas.
- The sputtered vapor is mainly neutral, the ionization fraction of the sputtered material is low (\(\sim 1\%\)).
- Over the last decade new ionized vapor deposition techniques have appeared that achieve 50 – 90 % ionization of the sputtered material.
- The energy of the ions can be tailored to obtain impinging particles with energies comparable to typical surface and molecular binding energies.
HiPIMS

Ionized Physical Vapor Deposition (IPVD)

- When the flux of ions is higher than the flux of neutrals or \(\Gamma_+ > \Gamma_m \) the process is referred to as ionized physical vapor deposition (IPVD)
- This is achieved by
 - increasing the power to the cathode (high power pulse)
 - a secondary discharge between the target and the substrate (rf coil or microwaves)
 - reshaping the geometry of the cathode to get more focused plasma (hollow cathodes)
- Common to all highly ionized techniques is very high density plasma
Ionized Physical Vapor Deposition (IPVD)

- The development of ionized physical vapor deposition (IPVD) devices was mainly driven by the need to deposit metal layers and diffusion barriers into trenches or vias of high aspect ratios
- Ionizing the sputtered vapor has several advantages:
 - improvement of the film quality
 - control of the reactivity
 - deposition on substrates with complex shapes and high aspect ratio
rf Inductive Coil in a Magnetron

- In order to generate highly ionized discharge a radio-frequency discharge can be added in the region between the cathode and the anode.
- The metal ions can then be accelerated to the substrate by means of a low voltage dc bias.
- Metal atoms sputtered from the cathode transit the rf plasma and can be ionized.
rf Inductive Coil in a Magnetron

- The metal atoms have low ionization potential (6 – 8 eV) compared to the inert Ar (15.8 eV)
- The metal ions can then be accelerated to the substrate by means of a low voltage dc bias
- The metal ions arrive at the substrate at normal incidence and at specific energy
HiPIMS

- In a conventional dc magnetron discharge the power density is limited by the thermal load on the target.
- Most of the ion bombarding energy is transformed into heat at the target.
- In unipolar pulsing the power supply is at low (or zero) power and then a high power pulse is supplied for a short period.
- The high power pulsed magnetron sputtering discharge uses the same sputtering apparatus except the power supply.
HiPIMS - Power supply

- The high power pulsed discharge operates with a
 - Cathode voltage in the range of 500-2000 V
 - Current densities of 3-4 A/cm²
 - Power densities in the range of 1-3 kW/cm²
 - Frequency in the range of 50 – 500 Hz
 - Duty cycle in the range of 0.5 – 5 %
HiPIMS - Power supply

- A pulse generator with a pre-ionizer
- A dc power supply maintains a conventional dc magnetron discharge
- The storage capacitor C_s is charged through a thyristor switch (T_2) from a charging circuit and a trigger circuit discharges the capacitor through a thyristor switch (T_1)
- The coil L reduces the rate of current rise
HiPIMS - Power supply

0.5 mTorr (solid line), 2 mTorr (dashed line) and 20 mTorr (dot dashed line)

(After Gudmundsson et al. (2002))

- The exact pulse shape is determined by the load
 - the discharge formed
 - it depends on the gas type and gas pressure
HiPIMS - Electron density

- The peak plasma density (electron density), n_e as a function of distance from Ta target for average power 300 W
- The electron density in the substrate vicinity is of the order of 10^{18} m$^{-3}$
Temporal and spatial variation of the electron density

Argon discharge at 20 mTorr with a titanium target
HiPIMS - Electron density

- Temporal and spatial variation of the electron density
- Argon discharge at 20 mTorr with a titanium target

(From Bohlmark et al. (2005b))
HiPIMS - Electron density

The electron density versus time from the initiation of the pulse 9 cm below the target. The pulse is 100 µs long and the average power 300 W.

(After Gudmundsson et al. (2002))
The electron saturation current as a function of time from pulse initiation.

The argon pressure was 5 mTorr, the target was made of titanium, and the pulse energy 6 J.

(From Gylfason et al. (2005))
Each peak travels with a fixed velocity through the chamber.

The peaks travel with a velocity of 5.3×10^3 m/s at 1 mTorr, 1.7×10^3 m/s at 5 mTorr, and 9.8×10^2 m/s at 20 mTorr.
Intuitively a spherical symmetry is expected, since the diameter of the target (15 cm) is only one third of that of the chamber (44 cm).

In such a configuration, the amplitude of expanding solitons will decay, just due to the spherical geometry, as

\[n_{\text{peak}} \propto z^{-\frac{4}{3}} \]

where \(z \) is the radius of the soliton.
HiPIMS - Plasma dynamics

- The plasma density versus time while varying the
 - sputtering gas
 - chamber dimension
 - distance to target
 - applied power

(From Alami et al. (2005a))
HiPIMS - Plasma dynamics

- The first peak appears immediately after the plasma ignition
- The second peak appears only for pressures above 5 mTorr
- The lighter the gas atom the earlier the peaks appear
- Decreased chamber radius results in earlier appearance of the second peak
 - We propose that the charged particles travel as solitary waves
 - the second peak is a reflection from the walls

(From Alami et al. (2005a))
HiPIMS - Ionization fraction

- There have been conflicting reports on the ionized flux fraction
 - 70 % for Cu (Kouznetsov et al., 1999)
 - 40 % for Ti$_{0.5}$Al$_{0.5}$ (Macák et al., 2000)
 - 9.5 % for Al (DeKoven et al., 2003)
 - 4.5 % for C (DeKoven et al., 2003)
- The degree of ionization
 - 90 % for Ti (Bohlmark et al., 2005a)

(From Bohlmark et al. (2005a))
HiPIMS - Ionization fraction

- To explore the ionization mechanism and the temporal behavior of the plasma parameters a time dependent global (volume averaged) model was developed.
- The discharge is assumed to consist of:
 - electrons, e
 - argon atoms in the ground state, Ar
 - metastable argon atoms, Ar*
 - argon ions, Ar⁺
 - metal atoms, M
 - metal ions, M⁺
HiPIMS - Ionization fraction

- Metal ions are generated by electron impact ionization
 \[e + M \rightarrow M^+ + 2e \]
 by Penning ionization by collision with an electronically excited argon atom
 \[Ar^* + M \rightarrow M^+ + Ar + 2e \]
 by charge exchange
 \[Ar^+ + M \rightarrow M^+ + Ar \]

- The metal ions are assumed to be lost by diffusion to solid surfaces such as the chamber walls
HiPIMS - Ionization fraction

■ Particle balance for metal ions

\[
\frac{dn_{m^+}}{dt} = k_{\text{miz}} n_e n_m + k_P n_{\text{Ar}^*} n_m + k_{\text{chexc}} n_{\text{Ar}^+} n_m - k_{\text{wall},m^+} n_{m^+}
\]

- electron impact
- Penning
- charge exchange
- loss to wall

■ Particle balance for metal atoms

\[
\frac{dn_m}{dt} = \frac{\gamma_{\text{sput}} h_L u_B n_{\text{Ar}^+} r_T^2}{R^2 L} - k_{\text{miz}} n_e n_m - k_P n_{\text{Ar}^*} n_m - k_{\text{chexc}} n_{\text{Ar}^+} n_m - k_{\text{diff},m} n_{m^+}
\]

- sputtering from target
- ionization
- Penning
- charge exchange
- loss to wall
HiPIMS - Ionization fraction

- Particle balance for argon ions, \(\text{Ar}^+ \)

\[
\frac{dn_{\text{Ar}^+}}{dt} = k_{iz} n_e n_{\text{Ar}} + k_{\text{exc,iz}} n_e n_{\text{Ar}^*} - k_{\text{chexc}} n_m n_{\text{Ar}^+} - k_{\text{wall,Ar}^+} n_{\text{Ar}^+}
\]

- Particle balance for metastable argon atoms, \(\text{Ar}^* \)

\[
\frac{dn_{\text{Ar}^*}}{dt} = k_{\text{exc}} n_e n_{\text{Ar}} - (k_{\text{exc,iz}} + k_{\text{deexc}}) n_e n_{\text{Ar}^*} - k_{\text{loss,Ar}^*} n_{\text{Ar}^*} - k_P n_{\text{Ar}^*} n_m
\]

- Quasi-neutrality condition

\[
n_e = n_{\text{Ar}^+} + n_{m+}
\]

- Power balance

\[
\frac{d}{dt} \left(\frac{3}{2} e n_e T_e \right) = \frac{P_{\text{abs}}}{V} - e \varepsilon_c k_{iz} n_{\text{Ar}} n_e - e k_{\text{wall,Ar}^+} (\varepsilon_e + \varepsilon_i) n_{\text{Ar}^+}
\]
HiPIMS - Ionization fraction

- The temporal variation of the particle density and the electron temperature was obtained by solving the differential equations simultaneously and self-consistently.
- We assume a discharge chamber of radius $R = 15\, \text{cm}$ and length $L = 15\, \text{cm}$ with a target of radius $7.5\, \text{cm}$ made of aluminum.
- The electron energy distribution is assumed to be Maxwellian.

The power pulse was the measured pulse at 10 mTorr.
HiPIMS - Ionization fraction

- The calculated electron and ion density versus time

From Ehiasarian et al. (2002)

- The measured emission from a discharge with a Cr target
HiPIMS - Ionization fraction

- The calculated electron temperature
HiPIMS - Ionization fraction

- The ionization fraction of the sputtered aluminum and the ionized flux fraction
 - The integrated ionized fraction during the pulse is 0.76
 - The integrated ionized flux fraction during the pulse is 0.89
The first 100 μs electron impact ionization is the most effective process in creating metal ions.

Then exchange becomes the dominant process in creating metal ions.
HiPIMS - Ion energy

- The time averaged ion energy distribution for Ar\(^+\) and Ti\(^+\) ions
- The gas pressure was 3 mTorr, pulse energy 3 J and 10 J and the target made of Ti
- The ion energy distribution is broad to over 100 eV
- About 50 % of the Ti\(^+\) ions have energy > 20 eV

(From Bohlmark et al. (2006))
HiPIMS - Ion energy

- The measured ion energy distribution for Ar$^+$ and Ti$^+$ ions over 20 μs time windows
- The gas pressure was 3 mTorr, pulse energy 9 J and the target made of Ti

(From Bohlmark et al. (2006))
HiPIMS - Ionization fraction

- The ion flux versus time measured by a mass spectrometer (20 µs windows)
- The gas pressure was 3 mTorr, pulse energy 8 J and the target made of Ti

(From Bohlmark et al. (2006))
HiPIMS - Deposition rate

Several groups report on a significantly lower deposition rate for HIPIIMS as compared to dcMS

- a factor of 2 lower deposition rate for Cu and Ti thin films (Bugaev et al., 1996)
- a factor of 4 – 7 lower deposition rate for reactive sputtering of TiO$_2$ from a Ti target (Davis et al., 2004)
- a factor of 3 - 4 lower deposition rate for reactive sputtering of AlO$_x$ from an Al target (Sproul et al., 2004)
- the reduction in deposition rate decreases with decreased magnetic confinement (weaker magnetic field) (Bugaev et al., 1996)
HiPIMS - Deposition rate

- and compared to mid frequency pulsed magnetron discharge
 - a factor of 4 lower deposition rate for reactive sputtering of zirconium oxide from Zr target (Glocker et al., 2004)
 - no reduction in deposition rate for reactive sputtering of tantalum oxide from Ta target (Glocker et al., 2004)
HiPIMS - Deposition rate

- One explanation is that the sputtered material is ionized close to the target and many of the metallic ions will be attracted back to the target surface by the cathode potential.
- A reduction in the deposition rate would occur mainly for metals with a low self-sputtering yield.
- Maybe this can be reduced by optimized magnetic confinement.
Application - Trench filling

- Ta thin films grown on Si substrates placed along a wall of a 2 cm deep and 1 cm wide trench
 - conventional dc magnetron sputtering (dcMS)
 - high power impulse magnetron sputtering (HiPIMS)
- Average power is the same 440 W
- They were compared by scanning electron microscope (SEM), transmission electron microscope (TEM), and Atomic Force Microscope (AFM)
Application - Trench filling

- SEM images of Ta films grown by dc MS show columnar structures leaning toward the aperture

(From Alami et al. (2005b))
HiPIMS

Application - Trench filling

- dcMS grown films exhibit rough surface, pores between grains and inclined columnar structure, leaning toward the aperture
- Ta films grown by HiPIMS have smooth surface, and dense crystalline structure with grains perpendicular to the substrate

(From Alami et al. (2005b))
Other applications

- The advantage of high power pulsed magnetron discharge for film growth has been demonstrated by several groups:
 - Ultra-thin carbon films grown by HIPIMS have significantly higher densities (2.7 g/cm3), than films grown by a conventional dcMS discharge (< 2.0 g/cm3). Furthermore, the surface roughness is lower (DeKoven et al., 2003).
 - TiO$_2$ thin films grown by reactive sputtering by HIPIMS have higher index of refraction than grown by dcMS discharge - maybe due to higher density (Davis et al., 2004).

- This illustrates how the bombarding ions transfer momentum to the surface allowing the microstructure to be modified.
Summary

- We reviewed the physics of the high power impulse magnetron sputtering discharge (HIPI MS).

- Power supply
 - Essentially the same sputtering apparatus except for the power supply.

- Electron density
 - Roughly 2 orders of magnitude higher in the substrate vicinity than for a conventional dc magnetron sputtering discharge.

- Plasma dynamics
 - The peak electron density travels away from the target with fixed velocity.
Summary

- **Ionization fraction**
 - Ionization fraction is high, mainly due to the high electron density
 - The ions on the inert gas and the ions of the sputtered vapor are separated in time

- **Deposition rate**
 - Deposition rate is lower than in a conventional dc magnetron sputtering discharge, maybe due to self sputtering

- **We demonstrated the use of a high power pulsed magnetron sputtering discharge**
 - for trench filling
 - to grow denser films
References

