Reactive deposition of Vanadium Nitride by High Power Impulse Magnetron Sputtering (HiPIMS)

H. Hajihoseini^{1,2}, J. T. Guðmundsson^{1,2}

¹Department of Space and Plasma Physics, KTH - Royal Institute of Technology, Stockholm, Sweden ² Science Institute, University of Iceland, Reykjavik, Iceland

3rd International Science and Applications of Thin Films Conference and Exhibition (SATF 2018) Izmir, Turkey September 17-21, 2018

Sac

Introduction

- Magnetron sputtering has been a highly successful technique that is essential in a number of industrial applications
- A magnet is placed at the back of the cathode target to confine the energetic electrons near the cathode
- In a conventional dc magnetron sputtering discharge the power density (plasma density) is limited by thermal load on target
- Low ionization flux fraction of the sputtered material (<10%)

High power impulse magnetron sputtering discharge

- High ionization of sputtered material requires very high density plasma
- High power pulsed magnetron sputtering (HPPMS)
- In a HiPIMS discharge a high voltage pulse is supplied for a
 - Iow frequency
 - Iow duty cycle
 - Iow average power
- Ionization flux fraction of the sputtered materials up to 60%

Gudmundsson et al. (2012) JVSTA 30 030801

• Power density limits $p_t = 0.05 \text{ kW/cm}^2 \text{ dcMS limit}$ $p_t = 0.5 \text{ kW/cm}^2 \text{ HiPIMS limit}$

I = 1 = 1

Experimental Setup

- Both HiPIMS and dcMS deposition are made at average power of 150W
- All depositions are made at working pressure of 0.9 Pa on 1µm SiO₂/Si substrate
- HiPIMS pulse was 200 μs long at frequency of 100 Hz repetition
- Two different 3 inches magnets are used for the sputtering

Sac

Deposition of pure Vanadium films

Pure Vanadium deposition

HiPIMS films are always denser and smoother than dcMS

Extracted data from XRR and AFM measurements of vanadium films									
Method	Magnet	Density	DR	Roughness	111 grain size	200 grain size	220 grain size		
		[g/cm ³]	[nm/min]	[nm]	[nm]	[nm]	[nm]		
HiPIMS	Strong	5.79	0.98	2.41	16	12.5	11.1		
HiPIMS	Weak	5.59	2.54	5.76	15.8	12.3	10.4		
dcMS	Strong	5.11	2.66	8.41	16.2	13	10.5		
dcMS	Weak	5.23	3.36	8.30	16	12.5	11.4		

- Using the strong magnet results in:
 - Higher film density in HiPIMS, lower density in dcMS film
 - Lower deposition rate for both methods
 - Significantly smother HiPIMS film, slightly rougher dcMS film
- The ratio DR_{HiPIMS}/DR_{dcMS} is 0.37 for strong and 0.77 for weak magnet
- Grain size is independ of deposition method and magnet strength

Deposition of Vanadium Nitride films

Introducing Nitrogen into the chamber

- Mixture of 40 sccm Ar and a range of N₂ flow rates was injected to the chamber
- 2 sccm nitrogen flow results in mixture of α-V and β-V₂N phases
- 5 sccm nitrogen flow results in stoiciometric cubic δ-VN phase

Hajihoseini and Gudmundsson (2017) JPD 50 505302

< □ > < 同 >

Introducing Nitrogen into the chamber

- Increasing Nitrogen flow results in:
 - Increase in discharge current
 - Longer delay in current onset
 - Need for higher voltage to keep the power constant
 - Lower deposition rate

Hajihoseini and Gudmundsson (2017) JPD 50 505302

Vanadium Nitride deposition using different magnets

- HiPIMS films are denser and smoother than dcMS film
- DR_{HiPIMS}/DR_{dcMS} is 0.53 for strong and 0.85 for weak magnet
- The ratios is 30% higher for strong magnet and 9% for weak magnet than V deposition ratio
- Strong magnet results in:
 - Higher density for both methods (close to bulk density)
 - Lower deposition rate for both methods
 - Smoother surface in HiPIMS, rougher surface in dcMS

Method	Magnet	Density	DR	Roughness
		[g/cm ³]	[nm/min]	[nm]
HiPIMS	Strong	6.137	0.83	0.63
HiPIMS	Weak	5.79	1.35	2.53
dcMS	Strong	5.25	1.55	5.44
dcMS	Weak	5.17	1.59	4.17

Vanadium Nitride deposition using different magnets

- Strong magnet generates about 2 times higher discharge current, thus the deposition is done at lower cathode voltage
- There is a longer delay on current onset when using strong magnet
- Longer delay is probably due to lower cathode voltage

Hajihoseini and Gudmundsson (2017) JPD 50 505302

< □ > < 同 > <

Vanadium Nitride deposition at different temperatures

- Growth temperature varied from room temperature up to 600°C
- Deposition at higher temperatures leads to:
 - Higher film density
 - Smoother film surface
 - lower growth rate up to 400°C but slightly higher rate at 600°C.

Hajihoseini and Gudmundsson (2017) JPD 50 505302

Vanadium Nitride deposition at different temperatures

- All films are polycrystalline and the (111), (200) and (220) crystal orientations are present in all samples
- Grains oriented in the (111) direction are dominant for all growth temperatures
- The (200) grain size increases steadily with increasing temperature from 5 to 13 nm

Hajihoseini and Gudmundsson (2017) JPD 50 505302

I = 1 + 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I =

Cross section SEM images of VN thin films

・ロト・西ト・西ト・西ト・日・ シック

Effect of substrate bias on properties of HiPIMS deposited vanadium nitride films

Vanadium Nitride deposition at different temperatures

- In terms of density
 - Grounded substrate -Lowest density (5.60 g/cm³)
 - At -50 V Highest density (6.03 g/cm³) (close to bulk)
 - -100 V to -200 V Almost unchanged (5.93 g/cm³)
- Deposition rate
 - At -50 V Highest DR (1.09 nm/min)
 - At -200 V Lowest DR (0.77 nm/min)

(a) (b) 1 (c) 5 . 9 (a) (a) (b) 1 (c) 1 (b) 1 (c) 1 (c)

Hajihoseini et al. (2018) Thin Solid Films 663 126

- Surface roughness
 - Grounded substrate Roughest (8.2 nm)

Substrate bias effect

- Film deposited at grounded substrate has uniformly distributed (200) planes while the (111) planes show an intense spot around $\psi = 0$ indicating considerable $\langle 111 \rangle$ texture normal to the substrate
- Substrate bias at -50 V, the (200) planes exhibit a ring at ψ = 20° along with an intense spot at ψ = 0 for (111) planes

Substrate bias effect

- Thus, there is a competition between these planes to grow normal to the substrate and in this regard the (111) texture is dominant
- Substrate bias up to -100 V causes the $\langle 111 \rangle$ texture to disappear but the (200) planes shows up at $\psi = 15^{\circ}$. Further increase in the substrate bias results in dominant $\langle 200 \rangle$ texture normal to the substrate

Substrate bias effect

- Nitrogen percentage decreased as substrate bias increased
- Substrate bias of -50 V lowest resistivity 48.4 μΩ cm
- This is among the lowest resistivities which has been reported for VN thin film
- Substrate bias of -200 V highest resistivity

Hajihoseini et al. (2018) Thin Solid Films 663 126

Nitrogen amount in VN films deposited by varying substrate bias

substrate bias voltage	Nitrogen content		
V	[%]		
0	54.52		
-50	51.60		
-100	50.61		
-150	49.22		
-200	48.02		

Conclusion

- HiPIMS deposition leads to denser films and smoother surfaces than films deposited by dcMS
- HiPIMS rate is closer to the dcMS rate in reactive mode than in non-reactive mode
- Lowering the magnetic field strength increases the deposition rate significantly for HiPIMS while dcMS rate is weakly dependent on the magnetic field
- Substrate bias of -50 V leads to most dense and smooth VN film and the highest deposition rate and conductivity.
- Low substrate bias encourages off-normal (200) texture and high substrate bias leads to only (200) texture normal to the substrate

Thank you for your attention

The slides can be downloaded at

http://langmuir.raunvis.hi.is/~tumi/ranns.html
and the project is funded by

- University of Iceland Research Fund for Doctoral students
- Icelandic Research Fund Grant No. 130029
- Swedish Government Agency for Innovation Systems (VINNOVA) contract no. 2014-04876

References

- H. Hajihoseini and J. T. Gudmundsson (2017). Vanadium and vanadium nitride thin films grown by high power impulse magnetron sputtering. *J. Phys. D: Appl. Phys.* **50**(50), 505302.
- H. Hajihoseini and M. Kateb and S. Ingvarsson and J. T. Gudmundsson (2018). Effect of substrate bias on properties of HiPIMS grown vanadium nitride films. *Thin Solid Films*. 663, 126–130.
- J. T. Gudmundsson, N. Brenning, D. Lundin, and U. Helmersson (2012). The high power impulse magnetron sputtering discharge. *J. Vac. Sci. Technol. A* **30**(3), 030801.

