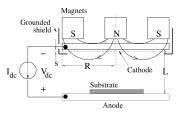
On recycling in high power impulse magnetron sputtering discharges

On ion recycling and electron heating in high power impulse magnetron sputtering discharges

J. T. Guðmundsson^{1,2}


¹Department of Space and Plasma Physics, KTH Royal Institute of Technology, Stockholm, Sweden ² Science Institute, University of Iceland, Reykjavik, Iceland

> Faculty of Science, Masaryk University, Brno, Czech Republic June 12, 2019

Introduction

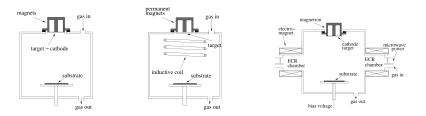
 Magnetron sputtering has been a highly successfull technique that is essential in a number of industrial applications

- A magnet is placed at the back of the cathode target with the pole pieces at the center and perimeter
- The magnetic field confines the energetic electrons near the cathode
- The electrons undergo numerous ionizing collisions before being lost to a grounded surface

Sac

On recycling in high power impulse magnetron sputtering discharges

The dc magnetron sputtering discharge


- Magnetron sputtering has been the workhorse of plasma based sputtering methods for over four decades
- Through the years there has been a continuous development of the magnetron sputtering processes to
 - increase the ionization of the sputtered vapor
 - improve target utilization
 - avoid target poisoning in reactive sputtering
 - increase deposition rates

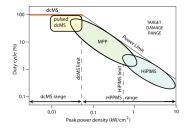
- For many applications a high degree of ionization of the sputtered vapor is desired
 - controlled ion bombardment of the growing film
 - ion energy can be controlled by a negative bias applied to the substrate
 - collimation enhanced step coverage
- Ionized flux of the sputtered material introduces an additional control parameter into the deposition process

From Gudmundsson (2008), J. Phys.: Conf. Ser. 100 082002

- In magnetron sputtering discharges increased ionized flux fraction is achieved by
 - a secondary discharge between the target and the substrate (rf coil or microwaves)
 - reshaping the geometry of the cathode to get more focused plasma (hollow cathode)
 - increasing the power to the cathode (high power pulse).
- Common to all highly ionized magnetron sputtering techniques is a very high density plasma

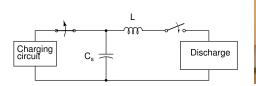
Sac

On recycling in high power impulse magnetron sputtering discharges



- In a conventional dc magnetron discharge the power density is limited by the thermal load on the target
- Most of the ion bombarding energy is transformed into heat at the target
- In a HiPIMS discharge a high power pulse is supplied for a short period
 - low frequency
 - Iow duty cycle
 - Iow average power
- The high power pulsed magnetron sputtering discharge uses the same sputtering apparatus except the power supply

- In dc magnetron sputtering the power density (plasma density) is limited by the thermal load on the target
- High power pulsed magnetron sputtering (HPPMS)
- High power impulse magnetron sputtering (HiPIMS)
 - a pulse of very high amplitude, an impulse, is applied to the cathode and a long pause exists between the pulses
- Modulated pulse power (MPP)
 - the initial stages of the pulse (few hundred μs) the power level is moderate (typical for a dcMS) followed by a high power pulse (few hundred μs up to a ms)



Gudmundsson et al. (2012) JVSTA 30 030801

Power density limits

- $p_t = 0.05 \text{ kW/cm}^2 \text{ dcMS limit}$
- $p_t = 0.5 \text{ kW/cm}^2 \text{ HiPIMS limit}$

- The high power impulse magnetron sputtering (HiPIMS) discharge operates with a
 - Cathode voltage in the range of 500 2000 V
 - Current densities of 0.5 4 A/cm²
 - Power densities in the range of 0.5 3 kW/cm²
 - Average power 200 600 W
 - Frequency in the range of 50 5000 Hz
 - Duty cycle in the range of 0.5 5 %

- The development of high power pulse magnetron sputtering is traced to the Moscow Engineering and Physics Institute (MEPhI)
- The first published record on what we now refer to as a pre-ionized HiPIMS discharge was presented at the XX International Conference on Phenomena in Ionized Gases (ICPIG) Braga, Italy, July 1991 by the group at MEPhI

OUASY-STATIONARY HIGH CURRENT FORMS OF LOW PRESSURE DISCHARGE Petisov L.K. .Shodachenko G.V. .Noggrin D.W. t of Plasma Physics. Faculty of Experimental and Theoretical Physics Mosicu Physics Engeneering Institute. 80-115490. Mosicow, 08081 discribed in 500-700 surface. This combine th a.- in quadrupole preliminary b the rectangular current 5-60 mks.plateau of 1. 2 up to 2010⁹ A (fig. current puls with

apgestron disc up to 0, 5 A/am

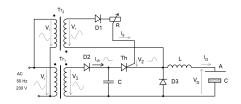
- The PhD thesis of Dimitry Mozgrin describes a high-current low-pressure quasistationary discharge in a magnetic field
- It was demonstrated for two configurations
 - a planar magnetron device
 - two hollow axisymmetric electrodes immersed in a cusp-shaped magnetic field
- For the planar magnetron device, they reported a peak power of 200 kW (200 A) onto a 120 mm diameter target giving peak a power density of 1.8 kW/cm² and discharge current densities of up to 25 A/cm² at a repetition rate of 10 Hz in a pre-ionized discharge Mozgrin (1994) Ph.D. thesis

STREET, RECEIPTING COMPRESSION STORAGE WITH

This material may be protected by Dopyright Law (Tille 17 U.S. Collect

На правах рукописи

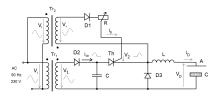
NONTPHE INSTRUCT BETALLOUP


DECEMBER AND A PLACE WORKSHOP OF LOOP USER AND UDADATATMICADUNTO DAODETA UNOMINI PADEDUNI D MATSATSON DO TR

OT 04 08 - SERVICE & XMARK DARKS

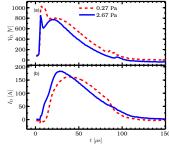
na ocumunate voence cremos

Moceans - 1994 r.

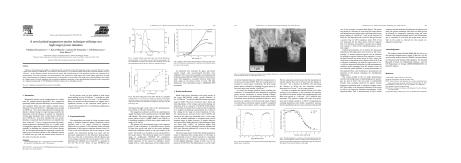

- The original concept of a HiPIMS power supply, which was based on thyristor switches and can deliver extremely high currents during the pulse
- The capacitor C had a value around 10 – 20 μF
- There are two transformers Tr₁ and Tr₂ working with the line frequency 50 – 60 Hz
- This type of HiPIMS power supply is capable of delivering pulse powers of up to P_p ≈ 1 MW

Based on Kouznetsov (2001) U.S. Patent no. 6,296,742 B2

- In this construction it is difficult to control the length of the active pulse, it is given by the time constant of the plasma impedance and the values of C and L
- Furthermore, the pulse repetition frequency is fixed by the frequency of the ac line supply
- This type of power supply was used in the early demonstration of the HiPIMS technique performed at Linköping University



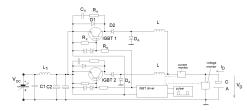
Based on Kouznetsov (2001) U.S. Patent no. 6,296,742



- The discharge voltage V_D and current I_D for an argon discharge at 0.27 and 2.67 Pa with 150 mm diameter tantalum target driven by an early thyristor-based power supply
- We see an initial voltage peak in the kilovolt range which is followed by a drop in the voltage to several hundred volts
- The voltage then drops even further to values that are typical operating voltages for a dcMS discharge
- As the voltage drops, the discharge current increases up to a peak value followed by a gradual decay of the current

From Gudmundsson et al. (2002) SCT 161 249

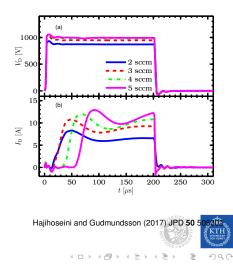
From Kouznetsov et al. (1999) SCT 122 290


< □ > < 同 > < 回 >

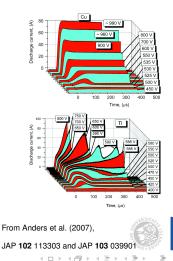
 This is the pulser unit used in the pionering work of Kouznetsov et al. (1999)

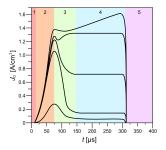
Sac

- Modern concepts of pulsed power supplies utilize insulated-gate bipolar transistors (IGBTs) as high power switches
- Also, the previously used small capacitor C is substituted by a large capacitor bank composed of low-impedance electrolytic capacitors
- A typical circuit diagram of a HiPIMS power supply based on IGBT switches



Hubička et al. (2019) in High Power Impulse Magnetron


Sputtering Discharge, Elsevier, 2019


- The discharge voltage V_D and current I_D for an argon discharge mixed with nitrogen at different flow rates and vanadium target
- The discharge is driven by an IGBT based power supply with a large capacitor bank
- The total gas pressure is 0.9 Pa, the argon flow rate is 40 sccm, the voltage pulse is 200 μs long and the pulse frequency is 100 Hz.

- In non-reactive discharge the current waveform shows an initial pressure dependent peak that is followed by a second phase that is power and material dependent
- The initial phase is dominated by working gas ions, whereas the later phase has a strong contribution from self-sputtering
- For some materials, the discharge switches into a mode of sustained self-sputtering

- The initial phase has a contribution from the working gas ions, whereas the later phase has a strong contribution from self-sputtering at high voltage
- The current is generally characterized by an initial peak followed by a more or less stable current plateau (bottom current curves)
- In other cases it shows an initial peak followed by a second increase of the discharge current

- The self-sputtering can operate in a self-sustained mode, when the ions of the sputtered vapor are created at high enough rate that the ions of the working gas are not needed
- The condition for sustained self-sputtering is expressed as

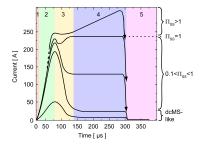
$$\Pi_{\rm ss} = \alpha \beta_{\rm t} Y_{\rm ss} = \mathbf{1}$$

where

- $\bullet \ \alpha$ is the probability of ionization of the sputtered atom
- β_t in the probability that the newly formed ion of the sputtered vapor returns to the target
- Y_{ss} is the self-sputter yield of the ion
- This is a steady state situation and the current remains constant

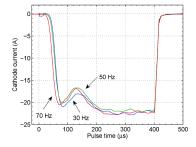
イロト イ理ト イヨト イヨト

- Note that since $\alpha < 1$ and $\beta_t < 1$ the condition $Y_{ss} > 1$ is necessary but not sufficient for achieving sustained self-sputtering
- The transient phase of self-sputtering runaway occurs when $\Pi_{ss}>1$
- Self-sputtering runaway occurs at a well-defined threshold power, determined by the discharge voltage and is readily obtained for high sputter yield materials
- But runaway can also occur at lower threshold voltages than for pure self-sputtering as well as for ransition metals and target materials of low sputter yield due to what is referred to as 'gas recycling' runaway

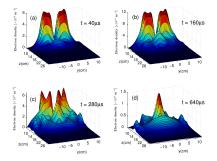

Anders (2011), SCT 205 S1, Anders et al. (2012) JPD 45 012003

200

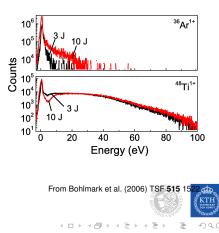
イロト イ理ト イヨト イヨト


- The bottom curve represents a range of low self-sputtering, $\Pi_{ss} < 0.1$ and the discharge physics in the plateau/runaway phase is dcMS-like
- The middle range of power densities, with $0.1 < \Pi_{ss} < 1$, represents partially self-sputtering discharge
- The top curve represents self-sputtering runaway which requires $\Pi_{ss} > 1$ and a self-sputter yield $Y_{ss} > 1/(\alpha\beta_t) > 1$

From Gudmundsson et al. (2012), JVSTA 30 030801



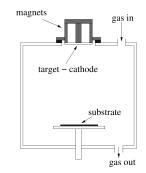
- Ar discharge with Ti target
- The initial peak in current results large flux of atoms from the target
- Collisions of the sputtered atoms with the working gas result in heating and expansion of the working gas – rarefaction
- A significant fraction of the sputtered atoms experience electron impact ionization (the ionization mean free path ~ 1 cm) and are attracted back to the target to participate in the sputtering process – self-sputtering


(After Bohlmark et al. (2005), IEEE Trans. Plasma Sci. 33 346)

- Temporal and spatial variation of the electron density
- Ar discharge at 20 mTorr, Ti target, pulse length 100 μ s
- The electron density in the substrate vicinity is of the order of $10^{18} 10^{19}$ m⁻³ ionization mean free path $\lambda_{iz} \sim 1$ cm

726

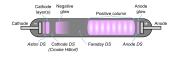
- The time averaged ion energy distribution for Ar⁺ and Ti⁺ ions
- The working gas pressure was 3 mTorr, pulse energy 3 J and 10 J and the target made of Ti
- The ion energy distribution is broad to over 100 eV
- About 50 % of the Ti⁺ ions have energy > 20 eV


On recycling in high power impulse magnetron sputtering discharges

Electron power absorption in magnetron sputtering discharges

Introduction

- The conventional wisdom is that plasma generation in magnetron sputtering discharges is based on the supply of energy via secondary electrons (SEs) accelerated from the target
- However, one of the remaining fundamental questions is how power is absorbed by the electrons in the magnetron sputtering discharge



On recycling in high power impulse magnetron sputtering discharges

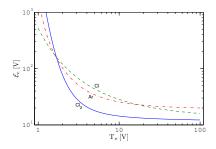
dc magnetron sputtering discharge

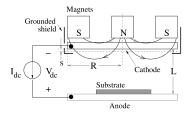
T. J. Petty, LPGP, Université Paris Sud

- A dc discharge with a cold cathode is sustained by secondary electron emission from the cathode by ion bombardment
- The discharge current at the target consists of electron current $I_{\rm e}$ and ion current $I_{\rm i}$ or

$$I_{\rm D} = I_{\rm e} + I_{\rm i} = I_{\rm i} (1 + \gamma_{\rm SE})$$

where $\gamma_{\rm SE}$ is the secondary electron emission coefficient


• Note that $\gamma_{SE} \sim 0.05 - 0.2$ for most metals, so at the target, the dominating fraction of the discharge current is ion current


- These secondary electrons are accelerated in the cathode dark space – referred to as primary electrons
- They must produce sufficient number of ions to release more electrons from the cathode
- The number of electron-ion pairs created by each secondary electron is then

$$\mathcal{N} \approx \frac{V_{\rm D}}{\mathcal{E}_{\rm c}}$$

where \mathcal{E}_c is the energy loss per electron-ion pair created

 To account for the electrons that are not trapped we define an effective secondary electron emission coefficient

$$\gamma_{\rm SE,eff} = m\epsilon_{\rm e}(1-r)\gamma_{\rm SE}$$

- *ϵ*_e is the fraction of the electron energy that is used for ionization before being lost
- *m* is a factor that accounts for secondary electrons ionizing in the sheath
- *r* is the recapture probability of secondary electrons

 To sustain the discharge the condition

 $\gamma_{\rm SE, eff} \mathcal{N} = 1$

has to be fulfilled

 This defines the minimum voltage to sustain the discharge as

$$V_{\rm D,min} = \frac{\mathcal{E}_{\rm c}}{\beta \gamma_{\rm SE,eff}}$$

referred to as Thornton equation

 β is the fraction of ions that return to the cathode

Magnetron sputtering: basic physics and application to cylindrical magnetrons

John A. Thornton

Telic Corporation, 1631 Colorado Avenue, Santa Monica, California 90404 (Received 22 September 1977; accepted 7 December 1977)

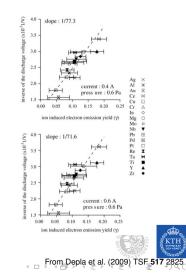
Magnetron sputtering sources can be defined as sloed devices in which magnetic fields are used in concert with the cathods united to form detector targe which are so configured that the EXB detector-defit currents close on themselves. Cassial cylindrical magneton sputtering sources of the area of the start of the start of the start of the start of the source of the start of the source of the start of the sputtering rates can be obtained, nearly independent of voltage, even at low pressures. This sputtering rates can be obtained, nearly independent of voltage, even at low pressures. The sputtering rates can be obtained, nearly independent of voltage, even at low pressures. This sputtering sources are also review.

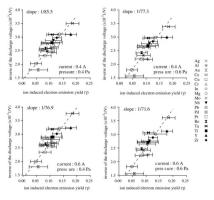
PACS numbers: 81.15.-z, 52.75.-d

Thornton (1978) JVST 15(2) 171

- The basic assumption is that acceleration across the sheath is the main source of energy for the electrons
- Above breakdown the parmeters m, β, ε_e and r can vary with the applied voltage
- We can rewrite the Thornton equation for any voltage

$$\frac{1}{V_{\rm D}} = \frac{\beta m \epsilon_{\rm e} (1-r)}{\mathcal{E}_{\rm c}} \gamma_{\rm SE}$$


A low-pressure cold-cathode discharge is maintained primarily by secondary electrons emitted from the cathode by ion bombardment. These electrons are accelerated in the CDS and enter the plasma where, known as primary electrons, they must produce sufficient ions to release one further electron from the cathode.⁷² This requirement can be expressed by the following relationship for the minimum potential to sustain such a discharge:⁷³

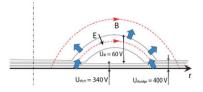

$$V_{\min} = \mathcal{E}_0 / \Gamma_i \epsilon_i \epsilon_e \qquad (5)$$

Thornton (1978) JVST 15(2) 171

- A plot of the inverse discharge voltage $1/V_{\rm D}$ against $\gamma_{\rm SE}$ should then give a straight line through the origin
- Depla et al. measured the discharge voltage for a 5 cm diameter target for Ar working gas for 18 different target materials
- Since all the data is taken in the same magnetron, at same current and pressure, the discharge parameters parmeters *m*, β, ε_e and *ε*_c are independent of γ_{SE}

From Depla et al. (2009) TSF 517 2825

- 1/V_D against γ_{SE} for gas pressures of 0.4 and 0.6 Pa and discharge currents 0.4 A and 0.6 A
- It can be seen that a straight line indeed results, but that it does not pass through the origin

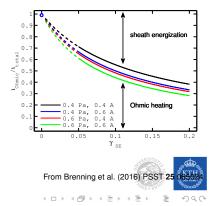

- We here propose that the intercept is due to Ohmic heating
- We can now write the inverse discharge voltage $1/V_{\rm D}$ in the form of a generalized Thornton equation

$$\frac{1}{V_{\rm D}} = \underbrace{\frac{\beta \epsilon_{\rm e}^{\rm H} m (1-r) (1-\delta_{\rm IR})}{\mathcal{E}_{\rm c}^{\rm H}}}_{a} \gamma_{\rm SE} + \underbrace{\frac{\epsilon_{\rm e}^{\rm C} \langle l_{\rm e}/l_{\rm D} \rangle_{\rm IR} \delta_{\rm IR}}{\mathcal{E}_{\rm c}^{\rm C}}}_{b}$$
or
$$\frac{1}{V_{\rm D}} = a \gamma_{\rm SE} + b$$

- We associate a with hot electrons e^H, sheath acceleration
- We associate b with the Ohmic heating process and cold electrons e^C

- The figure shows schematically the magnetic field lines and the electric equipotential surfaces above the racetrack
- A potential $V_{\rm SH}$ falls over the sheath, and the rest of the applied voltage, $V_{\rm IR} = V_{\rm D} - V_{\rm SH}$, falls across the extended pre-sheath, the ionization region (IR), $\delta_{\rm IR} = V_{\rm IR}/V_{\rm D}$
- Ohmic heating, the dissipation of locally deposited electric energy
 J_e · E to the electrons in the plasma volume outside the sheath

From Brenning et al. (2016) PSST 25 065024



I _D (A)	p (Pa)	Slope k	Intercept l	$\delta_{\rm IR} = U_{\rm IR}/U_{\rm D}$
0.4	0.4	0.0117	0.00145	0.19
0.4	0.6	0.0129	0.00120	0.16
0.6	0.4	0.0130	0.00130	0.17
0.6	0.6	0.0140	0.00110	0.15

- It follows that the fraction of the total ionization that is due to Ohmic heating can be obtained directly from the line fit parameters *a* and *b*
- This can be written as a function of only the secondary electron yield

 $\gamma_{\rm SE}$

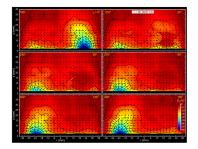
$$\frac{\iota_{\rm Ohmic}}{\iota_{\rm total}} = \frac{b}{a\gamma_{\rm SE} + b}$$

$I_{\rm D}({\rm A})$	p (Pa)	Slope k	Intercept l	$\delta_{\rm IR} = U_{\rm IR}/U_{\rm D}$
0.4	0.4	0.0117	0.00145	0.19
0.4	0.6	0.0129	0.00120	0.16
0.6	0.4	0.0130	0.00130	0.17
0.6	0.6	0.0140	0.00110	0.15

 The fraction of the discharge voltage that falls over the ionization region

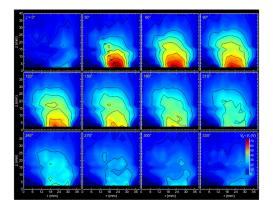
$$\delta_{\rm IR} = \frac{V_{\rm IR}}{V_{\rm D}}$$

can be estimated from


$$b = rac{\epsilon_{e}^{C} \langle I_{e} / I_{D} \rangle_{IR} \delta_{IR}}{\mathcal{E}_{c}^{C}}$$

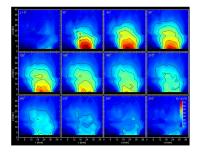
We assume $\epsilon_{\rm e}^{\rm C} = 0.8, \quad \langle I_{\rm e}/I_{\rm D}\rangle_{\rm IR} \approx 0.5,$ and $\mathcal{E}_{c}^{C} = 53.5 \text{ V} \text{ for } T_{e} = 3 \text{ V}$ which gives $\delta_{IR} = 0.15 - 0.19$ • 15 - 19 % of the applied discharge voltage fall over

the ionization region


Sac

- Recent measurements have revealed strong electric fields parallel and perpendicular to the target of a dc magnetron sputtering discharge
- The largest E-fields result from a double layer structure at the leading edge of an ionization zone
- It is suggested that the double layer plays a crucial role in the energization of electrons since electrons can gain several tens of eV when crossing the double layer

From Panjan and Anders (2017) JAP 121 063302



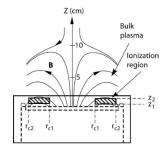
From Panjan and Anders (2017) JAP 121 063302

• The distribution of $V_p - V_f \propto \langle E \rangle$ in the r - z plane for a dc magnetron sputtering discharge operated at 270 V and 0.27 Pa

- Electrons gain energy when they encounter an electric field – a potential gradient, such as the field in the double layer
- The electron heating power J_e · E is associated with an acceleration of electrons in the electric field – this electron energization in a double layer is Ohmic heating

From Panjan and Anders (2017) JAP 121 063302

< □ > < 同 > <



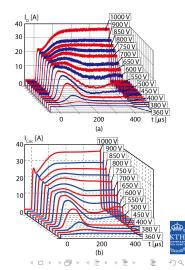
On recycling in high power impulse magnetron sputtering discharges

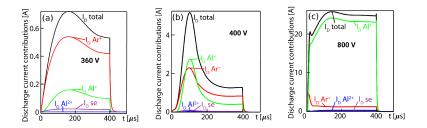
Ionization region model studies of HiPIMS discharges

- The ionization region model (IRM) was developed to improve the understanding of the plasma behaviour during a HiPIMS pulse and the afterglow
- The main feature of the model is that an ionization region (IR) is defined next to the race track
- The IR is defined as an annular cylinder with outer radii r_{c2} , inner radii r_{c1} and length $L = z_2 - z_1$, extends from z_1 to z_2 axially away from the target

The definition of the volume covered by the IRM

From Raadu et al. (2011) PSST 20 065007


- The temporal development is defined by a set of ordinary differential equations giving the first time derivatives of
 - the electron energy
 - the particle densities for all the particles
- The species assumed in the of-IRM are
 - cold electrons e^C (Maxwellian), hot electrons e^H (sheath acceleration)
 - argon atoms Ar(3s²3p⁶), warm argon atoms in the ground state Ar^W, hot argon atoms in the ground state Ar^H, Ar^m (1s₅ and 1s₃) (11.6 eV), argon ions Ar⁺ (15.76 eV)
 - titanium atoms Ti(a³F), titanium ions Ti⁺ (6.83 eV), doubly ionized titanium ions Ti²⁺ (13.58 eV)
 - aluminium atoms Al(²P_{1/2}), aluminium ions Al⁺ (5.99 eV), doubly ionized aluminium ions Al²⁺ (18.8 eV)

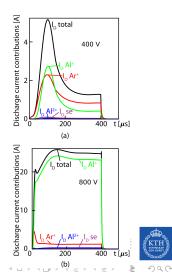

Sac

- The model is constrained by experimental data input and fitted to reproduce the measured discharge current and voltage curves, *I*_D(*t*) and *V*_D(*t*), respectively
- Two model fitting parameters were found to be sufficient for a discharge with Al target
 - *V*_{IR} accounts for the power transfer to the electrons
 - β is the probability of back-attraction of ions to the target

From Huo et al. (2017) JPD 50 354003

Experimental data from Anders et al. (2007) JAP 102 113303

- A non-reactive discharge with 50 mm diameter Al target •
- Current composition at the target surface •


From Huo et al. (2017) JPD 50 354003 Experimental data from Anders et al. (2007) JAP 102 113303 A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

500

- When the discharge is operated at 400 V the contributions of Al⁺ and Ar⁺-ions to the discharge current are very similar
- At 800 V Al⁺-ions dominate the discharge current (self-sputtering) while the contribution of Ar⁺ is below 10 % except at the initiation of the pulse

From Huo et al. (2017) JPD 50 354003

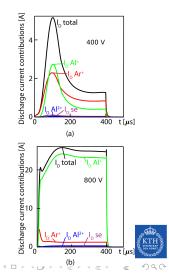
Experimental data from Anders et al. (2007) JAP 102 113303

- A primary current *I*_{prim} is defined as ions of the working gas, here Ar⁺, that are ionized for the first time and then drawn to the target
- This is the dominating current in dc magnetron sputtering discharges
- This current has a critical upper limit

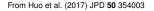
$$I_{\rm crit} = S_{
m RT} e p_{
m g} \sqrt{rac{1}{2\pi m_{
m g} k_{
m B} T_{
m g}}} = S_{
m RT} e n_{
m g} \sqrt{rac{k_{
m B} T_{
m g}}{2\pi m_{
m g}}}$$

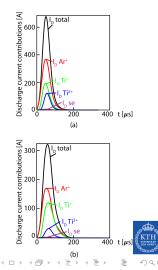
 Discharge currents I_D above I_{crit} are only possible if there is some kind of recycling of atoms that leave the target, become subsequently ionized and then are drawn back to the target

Anders et al. (2012) JPD 45 012003

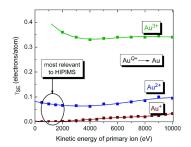


Hup et al (2014) PSST 23 025017 000


- For the 50 mm diameter AI target the critical current is $I_{\rm crit} \approx$ 7 A
- The experiment is operated from far below *I*_{crit} to high above it, up to 36 A.
- With increasing current *I*_{prim} gradually becomes a very small fraction of the total discharge current *I*_D
- The current becomes mainly carried by singly charged Al⁺-ions, meaning that self-sputter recycling or the current I_{SS-recycle} dominates

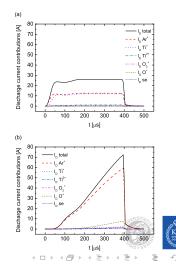

From Huo et al. (2017) JPD 50 354003

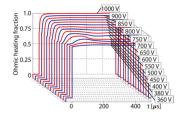
Experimental data from Anders et al. (2007) JAP 102 113303



- For discharges with Ti target the peak current is far above the critical current (up to 650 A, while $I_{\rm crit} \approx 19$ A)
- However, this discharge shows close to a 50/50 combination of self-sputter recycling I_{SS-recycle} and working gas-recycling I_{gas-recycle}
- Almost 2/3 of the current to the target is here carried by Ar⁺ and Ti²⁺-ions, which both can emit secondary electrons upon target bombardment, and this gives a significant sheath energization

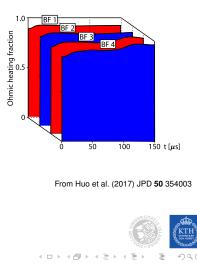
- Recall that singly charged metal ions cannot create the secondary electrons – for metal self-sputtering (γ_{SE} is practically zero)
- The first ionization energies of many metals are insufficient to overcome the workfunction of the target material
- For the discharge with AI target operated at high voltage, self-sputter dominated, the effective secondary electron emission is essentially zero

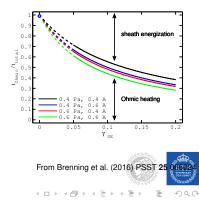

From Anders (2008) APL 92 201501


Reactive HiPIMS

- Ar/O₂ discharge with Ti target
- For this system $I_{\rm crit} \approx 5 \ {
 m A}$
- In the metal mode Ar⁺ and Ti⁺-ions contribute roughly equally to the current – combined self-sputter recycling and working gas recycling
- In the poisoned mode the current increaes and Ar⁺-ions dominate the current – working gas recycling

From Gudmundsson et al. (2016) PSST 25(6) 065004


- For the Al target, Ohmic heating is in the range of 87 % (360 V) to 99 % (1000 V)
- The domination of Al⁺-ions, which have zero secondary electron emission yield, has the consequence that there is negligible sheath energization
- The ionization threshold for twice ionized Al²⁺, 18.8 eV, is so high that few such ions are produced

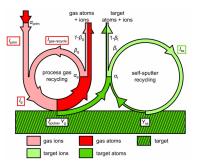

From Huo et al. (2017) JPD 50 354003

- For a Ti target Ohmic heating is about 92 %
 - Both Ar⁺ and Ti²⁺-ions contribute to creation of secondary electrons
- For Ti target in Ar/O₂ mixture
 - In the metal mode Ohmic heating is found to be 90 % during the plateau phase of the discharge pulse
 - For the poisoned mode Ohmic heating is 70 % with a decreasing trend, at the end of the pulse

- Ohmic heating is also very significant in dc magnetron sputtering discharges
- The relative contributions to the total ionization ι_{total} due to Ohmic heating, ι_{Ohmic}, and sheath energization, ι_{sheath}
- A blue circle marks the HiPIMS study modelled by Huo et al. (2013)
- Note that this HiPIMS case $\gamma_{\rm SE,eff}$ is consistent with the dcMS cases

On recycling in high power impulse magnetron sputtering discharges

The generalized recycling model


A working gas-sputtering parameter

 $\pi_{\rm g} = \alpha_{\rm g} \beta_{\rm g} \xi_{\rm pulse}$

where

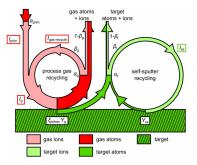
- $\alpha_{\rm g}$ is ionization probability
- β_{g} is back attraction probability
- $\xi_{\text{pulse}} = 1$ is return fraction in a pulse
- The total current carried by working gas ions

$$I_{g} = I_{prim} + I_{gas-recycle} = I_{prim} \left(1 + \frac{\pi_{g}}{1 - \pi_{g}} \right)$$

From Brenning et al. (2017) PSST 26 1250

Sac

• The total self-sputter current is

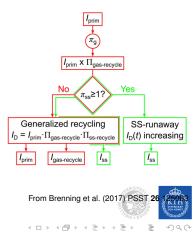

$$I_{\rm SS} = I_{\rm g} \left(\frac{Y_{\rm g}}{Y_{\rm SS}} \frac{\pi_{\rm SS}}{1 - \pi_{\rm SS}} \right)$$

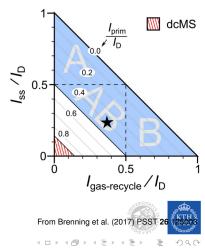
where the self-sputter parameter is

$$\pi_{\rm SS} = \alpha_{\rm t} \beta_{\rm t} \, \mathbf{Y}_{\rm SS}$$

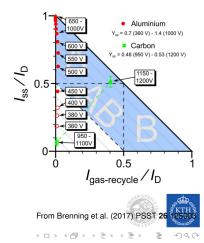
• The total discharge current is

$$I_{\rm D} = I_{\rm prim} + I_{\rm gas-recycle} + I_{\rm SS}$$
$$= I_{\rm prim} \left(1 + \frac{\pi_{\rm g}}{1 - \pi_{\rm g}}\right) \left(1 + \frac{Y_{\rm g}}{Y_{\rm SS}} \frac{\pi_{\rm SS}}{1 - \pi_{\rm S}}\right)$$




The discharge current

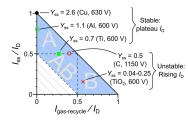
 $I_{\rm D} = I_{\rm prim} \Pi_{\rm gas-recycle} \Pi_{\rm SS-recycle}$

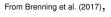

- *I*_{prim} is the seed current that acts as a seed to the whole discharge current and has an upper limit *I*_{crit}
- *I*_{prim}Π_{gas-recycle} is the seed current for the self-sputter process
- If $\pi_{SS} > 1$ the discharge goes into SS-runaway

- Recycling map
- A graph in which the ion current mix of *I*_{prim}, *I*_{gas-recycle}, and *I*_{SS} to the target in a magnetron discharge is defined by a point
- The value of $I_{\rm prim}/I_{\rm D}=39$ %, can be read on the diagonal lines ($Y_{\rm SS}=0.5$)
- $I_{\rm prim}/I_{\rm D} \geq$ 0.85 defines the dcMS regime
- For $I_{\rm SS}/I_{\rm D} > 0.5$ we have the SS-recycle dominated range A
- For I_{gas-recycle}/I_D > 0.5 we have the gas-recycle dominated range B

- The discharge with AI target moves from the dcMS regime to the HiPIMS discharge regime with increased discharge voltage – type A
- A discharge with carbon target jumps from the dcMS regime to the HiPIMS regime – both SS recycling and working gas recycling play a role – intermediate type AB

 Recycling map for five different targets with varying self-sputter yield


•
$$Cu - Y_{SS} = 2.6$$

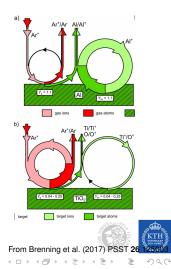

•
$$A_{I} - Y_{SS} = 1.1$$

• $T_{I} - Y_{SS} = 0.7$

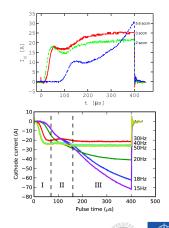
$$C - Y_{cc} - 0.5$$

•
$$TiO_2 - Y_{SS} = 0.04 - 0.25$$

- For very high self-sputter yields
 Y_{SS} > 1, the discharges above *l*_{crit} are of type A with dominating SS-recycling
- For very low self-sputter yields Y_{SS} < 0.2, the discharges above I_{crit} are of type B with dominating working gas recycling



PSST 26 125003



- Recycling loops
- Discharge with AI target SS recycling dominates
 - high self sputter yield
- Reactive discharge with TiO₂ target working gas recycling dominates
 - low self sputter yield

HiPIMS - Voltage - Current - time

- For Ar/O₂ discharge with Ti target
- At high frequencies, oxide is not able to form between pulses, and self-sputtering recycling by Ti⁺-ions is the dominant process
- At low frequency, the long off-time results in an oxide layer being formed (TiO₂) on the target surface and working gas recycling dominates – triangular current waveform

From Gudmundsson (2016), PPCF 58 01 400 Magnus et al. (2012), JVSTA 30_05060 On recycling in high power impulse magnetron sputtering discharges

Summary

Summary

- It has been demonstrated that Ohmic heating of the electrons can play a significant role in conventional dc magnetron sputtering discharges
- We used a ionization region model to explore the plasma composition and the electron heating mechanism in a high power impulse magnetron sputtering (HiPIMS) discharge
 - For high currents the discharge with Al target develops almost pure **self-sputter recycling**, while the discharge with Ti target exhibits close to a 50/50 combination of **self-sputter recycling** and **working gas-recycling**
 - The fraction of the total electron heating that is attributable to Ohmic heating is over 90 % in the HiPIMS discharge

Summary

- For very high self-sputter yields, above approximately $Y_{SS} \approx 1$, the discharges above I_{crit} are of type A with
 - dominating SS-recycling
 - very little secondary electron emission
 - little sheath energization of electrons
- For very low self-sputter yields, below approximately $Y_{\rm SS} \approx$ 0.2, the discharges above $I_{\rm crit}$ are of type B with
 - dominating working gas recycling
 - significant secondary electron emission
 - significant sheath energization of electrons.

Thank you for your attention

The slides can be downloaded at

http://langmuir.raunvis.hi.is/~tumi/ranns.html

The work is in collaboration with

- Dr. Daniel Lundin, Université Paris-Sud, Orsay, France
- Prof. Nils Brenning, KTH Royal Institute of Technology, Stockholm, Sweden
- Dr. Michael A. Raadu, KTH Royal Institute of Technology, Stockholm, Sweden
- Prof. Tiberu Minea, Université Paris-Sud, Orsay, France

and the project has been funded by

- Icelandic Research Fund Grant Nos. 130029, 196141
- Swedish Government Agency for Innovation Systems (VINNOVA) contract no. 2014-04876

References

- Anders, A. (2008). Self-sputtering runaway in high power impulse magnetron sputtering: The role of secondary electrons and multiply charged metal ions. *Applied Physics Letters* 92(20), 201501.
- Anders, A. (2011). Discharge physics of high power impulse magnetron sputtering. Surface and Coatings Technology 205, S1–S9.
- Anders, A., J. Andersson, and A. Ehiasarian (2007). High power impulse magnetron sputtering: Current-voltage-time characteristics indicate the onset of sustained self-sputtering. *Journal of Applied Physics 102*(11), 113303.
- Anders, A., J. Čapek, M. Hála, and L. Martinu (2012). The 'recycling trap': a generalized explanation of discharge runaway in high-power impulse magnetron sputtering. *Journal of Physics D: Applied Physics* 45(1), 012003.
- Bohlmark, J., J. T. Gudmundsson, J. Alami, M. Lattemann, and U. Helmersson (2005). Spatial electron density distribution in a high-power pulsed magnetron discharge. *IEEE Transactions on Plasma Science* 33(2), 346–347.
- Bohlmark, J., M. Lattemann, J. T. Gudmundsson, A. P. Ehiasarian, Y. A. Gonzalvo, N. Brenning, and U. Helmersson (2006). The ion energy distributions and ion flux composition from a high power impulse magnetron sputtering discharge. *Thin Solid Films* 515(5), 1522–1526.
- Brenning, N., J. T. Gudmundsson, D. Lundin, T. Minea, M. A. Raadu, and U. Helmersson (2016). The role of ohmic heating in dc magnetron sputtering. *Plasma Sources Science and Technology* 25(6), 065024.
- Brenning, N., J. T. Gudmundsson, M. A. Raadu, T. J. Petty, T. Minea, and D. Lundin (2017). A unified treatment of self-sputtering, process gas recycling, and runaway for high power impulse sputtering magnetrons. *Plasma Sources Science and Technology 26*(12), 125003.
- Depla, D., S. Mahieu, and R. De Gryse (2009). Magnetron sputter deposition: Linking discharge voltage with target properties. *Thin Solid Films* 517(9), 2825–2839.
- Fetisov, I. K., G. V. Khodachenko, and D. V. Mozgrin (1991). Quasy-stationary high current forms of low pressure discharge in magnetic field. In V. Palleschi and M. Vaselli (Eds.), Proceedings of the XX international conference on phenomena in ionized gases : Il Ciocco (Barga, Italy) 8th - 12th July 1991, pp. 474–475.
- Gudmundsson, J. T. (2008). Ionized physical vapor deposition (IPVD): Magnetron sputtering discharges. *Journal of Physics: Conference Series 100*, 082002.

Gudmundsson, J. T. (2016). On reactive high power impulse magnetron sputtering. Plasma Physics and Controlled Fusion 58(1), 014002.

References

- Gudmundsson, J. T., J. Alami, and U. Helmersson (2002). Spatial and temporal behavior of the plasma parameters in a pulsed magnetron discharge. *Surface and Coatings Technology* 161(2-3), 249–256.
- Gudmundsson, J. T., N. Brenning, D. Lundin, and U. Helmersson (2012). The high power impulse magnetron sputtering discharge. Journal of Vacuum Science and Technology A 30(3), 030801.
- Gudmundsson, J. T., D. Lundin, N. Brenning, M. A. Raadu, C. Huo, and T. M. Minea (2016). An ionization region model of the reactive Ar/O₂ high power impulse magnetron sputtering discharge. *Plasma Sources Science and Technology 25*(6), 065004.
- Hajihoseini, H. and J. T. Gudmundsson (2017). Vanadium and vanadium nitride thin films grown by high power impulse magnetron sputtering. *Journal of Physics D: Applied Physics 50*(50), 505302.
- Hubička, Z., J. T. Gudmundsson, P. Larsson, and D. Lundin (2019). Hardware and power management for high power impulse magnetron sputtering. In D. Lundin, J. T. Gudmundsson, and T. Minea (Eds.), *High Power Impulse Mangetron Sputtering: Fundamentals, Technologies, Challenges and Applications*, pp. 49–80. Amsterdam, The Netherlands: Elsevier.
- Huo, C., D. Lundin, J. T. Gudmundsson, M. A. Raadu, J. W. Bradley, and N. Brenning (2017). Particle-balance models for pulsed sputtering magnetrons. *Journal of Physics D: Applied Physics 50*(35), 354003.
- Huo, C., D. Lundin, M. A. Raadu, A. Anders, J. T. Gudmundsson, and N. Brenning (2013). On sheath energization and ohmic heating in sputtering magnetrons. *Plasma Sources Science and Technology 22*(4), 045005.
- Huo, C., D. Lundin, M. A. Raadu, A. Anders, J. T. Gudmundsson, and N. Brenning (2014). On the road to self-sputtering in high power impulse magnetron sputtering: particle balance and discharge characteristics. *Plasma Sources Science and Technology 23*(2), 025017.
- Kouznetsov, V. (2001). Method and apparatus for magnetically enhanced sputtering. U.S Patent no. 6,296,742 B2 (October 2, 2001).
- Kouznetsov, V., K. Macák, J. M. Schneider, U. Helmersson, and I. Petrov (1999). A novel pulsed magnetron sputter technique utilizing very high target power densities. *Surface and Coatings Technology* 122(2-3), 290–293.

References

- Magnus, F., O. B. Sveinsson, S. Olafsson, and J. T. Gudmundsson (2011). Current-voltage-time characteristics of the reactive Ar/N₂ high power impulse magnetron sputtering discharge. *Journal of Applied Physics* 110(8), 083306.
- Magnus, F., T. K. Tryggvason, S. Olafsson, and J. T. Gudmundsson (2012). Current-voltage-time characteristics of the reactive Ar/O₂ high power impulse magnetron sputtering discharge. *Journal of Vacuum Science and Technology A* 30(5), 050601.
- Mozgrin, D. V. (1994). High-current low-pressure quasi-stationary discharge in a magnetic field: Experimental research. Ph. D. thesis, Moscow Engineering Physics Institute (MEPhI), (in Russian).
- Panjan, M. and A. Anders (2017). Plasma potential of a moving ionization zone in DC magnetron sputtering. Journal of Applied Physics 121(6), 063302.
- Raadu, M. A., I. Axnäs, J. T. Gudmundsson, C. Huo, and N. Brenning (2011). An ionization region model for high power impulse magnetron sputtering discharges. *Plasma Sources Science and Technology* 20(6), 065007.
- Thornton, J. A. (1978). Magnetron sputtering: basic physics and application to cylindrical magnetrons. Journal of Vacuum Science and Technology 15(2), 171–177.

