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Abstract

Magnetron sputtering devices are used in the deposition of thin films in
various sectors of modern industry. Many refinements of the simple dc
magnetron have been proposed. The unipolar pulsed magnetron sput-
tering device is one example. It shows great promise for applications
were a high degree of ionization of sputtered particles is necessary. Ion-
acoustic solitons are solitary ion density waves that can be modeled by
the Korteweg-de Vries equation. Time resolved Langmuir probe measure-
ments in a unipolar pulsed magnetron device indicate the existence of
spherical expanding ion-acoustic solitons traveling away from the mag-
netron target.

Útdráttur

Segulspætur eru notaðar til þess að framleiða þunnar húðir með jónakvörn-
un. Þær koma víða við sögu í iðnaði samtímans. Kynntar hafa verið
ýmsar endurbætur á einföldu jafnstraumssegulspætunni. Einpóla púls-
uð segulspæta er dæmi um slíka hönnunartillögu og lofar hún góðu fyrir
vinnslu sem krefst mikillar jónunar kvarnaðra agna. Jónaþéttleikabylgj-
um í rafgasi má lýsa með Korteweg-de Vries jöfnunni. Hún hefur ein-
faralausnir. Tímaháðar mælingar með Langmuir nema í einpóla púlsaðri
segulspætu gefa til kynna að sundurleitnir kúlusamhverfir einfarar ferðist
frá skotmarki segulspætunnar.
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Chapter 1

Introduction

The technique of thin film deposition has wide ranging applications in var-

ious sectors of modern industry [Proud, 1991]. Thin films are deposited

onto bulk material to achieve properties unattainable in the bulk alone.

Examples include hard, wear-resistant coatings, low friction coatings, cor-

rosion resistant coatings, decorative coatings and coatings with specific

optical, or electrical properties. Additional functionality can be attained

by depositing multiple layers of different materials, e.g., optical interfer-

ence filters that consist of tens or even hundreds of layers alternating be-

tween high and low indexes of refraction. When multiple layering is com-

bined with lithographic patterning, micro structures of great variety can

be constructed. This is the basic technology of the integrated circuit and

micro mechanical device industries [Smith, 1995, p. 1 – 3]. A plethora of

thin film deposition methods has been developed but in this work we shall

focus on the approach known as sputtering.

Sputtering falls in the class of physical vapor deposition (PVD) meth-



ods. The defining characteristic of PVD methods is that the source of the

film-forming material is in solid form. The objective of the deposition pro-

cess is to vaporize the solid source material and transport it to the surface

being coated (the substrate) in a controlled manner. In sputtering, this is

accomplished by bombarding the source (referred to as the target) with

ions that knock out individual atoms or molecules in collisions with the

target surface. The ions are supplied by immersing the target in a plasma,

obtained by ionizing a gas (often argon) at low pressure. In many cases

the neutral sputtered particles gain enough momentum in the collision

to shoot across to the substrate and deposit on it [Lieberman and Lichten-

berg, 1994, p. 522]. In some cases it is advantageous to ionize the sputtered

particles for additional control of the transport. The deposition rate de-

pends on the gas pressure since collisions of sputtered particles with the

background gas tend to scatter them off course. This scattering can also

negatively effect the coating quality since it enhances the oblique compo-

nent in the deposition flux [Thornton, 1986]. Therefore it is preferable to

operate a sputtering device at low gas pressure.

The popularity of sputtering for thin film deposition can be attributed

to the following unique combination of advantages over other techniques:

any material can be volatilized by sputtering, compounds are volatilized

stoichiometrically, and the film deposition rate can be made uniform over

very large areas. Furthermore, the kinetic-energy distribution of sputtered

atoms falls largely within the energy window for displacing surface atoms

on the depositing film without causing subsurface damage [Smith, 1995,

p. 431 – 432].



+

−

VdcdcI

Anode

Cathode

Substrate

+−

Figure 1.1: A dc glow discharge sputtering device. The upper electrode
is the cathode, which serves as a target for ion impact sputtering. The
substrate to be coated is placed on the anode. When the positive ions
bombard the negative cathode, sputtered neutral particles and energetic
secondary electrons are emitted back into the plasma.

1.1 Magnetron sputtering devices

In its simplest form a sputtering device consists of two parallel plates, the

cathode and the anode, in a vacuum chamber with a controllable gas pres-

sure. A negative dc voltage in the range 1 – 5 kV is applied to the cathode

and the anode is grounded. The cathode then becomes the source of the

film-forming material (the target) and the substrate to be coated is placed

on the anode (figure 1.1). The plasma in the chamber is maintained by

secondary electrons emitted from the target due to the impact of energetic

ions. These electrons are accelerated back into the plasma and, if the oper-

ating pressure is high enough, undergo ionizing collisions with the back-

ground gas before being lost to the grounded surface. To maintain the

discharge the pressure must be kept above 30 mTorr, which is higher than

desired for optimum deposition, due to scattering of sputtered particles
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Figure 1.2: A magnetron sputtering device. A magnet is placed at the back
of the cathode target with pole pieces at the center and the perimeter. The
magnetic field B confines the energetic electrons near the cathode.

by the background gas. This simple configuration, termed glow discharge

sputtering, yields deposition rates of ≈ 350 Å/min, at best [Lieberman and

Lichtenberg, 1994, p. 465 – 466]. In order to achieve higher rates several

enhancements can be made.

One particularly successful enhancement is to confine the secondary

electrons in a magnetic trap above the cathode. Such a setup is referred

to as a planar magnetron sputtering device [Chapin, 1974; Waits, 1978]. The

magnetic field is supplied by an axisymetric permanent magnet placed at

the back of the cathode plate as shown in figure 1.2. Due to the increased

electron confinement the magnetron can operate at voltages as low as 200

V and argon pressures in the 2 – 5 mTorr range. The magnetic trap en-

hances the sputtering and the lower operating pressure reduces scattering

of sputtered particles by the background gas. The resulting deposition

rate is significantly increased to typical values of ≈ 2000 Å/min [Lieber-



man and Lichtenberg, 1994, p. 466 – 467].

Although a general improvement from the simple glow discharge, con-

ventional dc magnetron sputtering processes suffer from a few funda-

mental problems. These include low target utilization, target poisoning

during reactive sputtering, and poor deposition rates for dielectric mate-

rials [Kelly and Arnell, 2000]. Increased deposition rates require increased

target voltage to achieve a higher plasma density. This leads to a higher

ion flux which in turn increases the target thermal load since most of the

energy of the positive ions, bombarding the target, is transformed into

heat. Several new sputtering systems have been designed to overcome

these obstacles. Some of the problems have been alleviated by pulsing the

applied voltage, others have been solved by additional ionization using

an rf induction coil [Rossnagel and Hopwood, 1993, 1994] or additional

microwave power [Yonesu et al., 1999]. Refinements of the magnet trap

have also been suggested. These include increased magnetic confinement

[Kadlec et al., 1990] and an unbalanced magnetron, where the outer ring

magnets are strengthened or weakened in an attempt to increase the ion

current density in the vicinity of the substrate [Window and Savvides,

1986a,b].

Two principal methods of pulsing have been proposed: asymmetric

bipolar pulsing and unipolar pulsing. Asymmetric bipolar pulsing in the

medium frequency range (10 – 250 kHz), has become established as one

of the main techniques for deposition of oxide and nitride films [Schiller

et al., 1993; Kelly et al., 2000]. Unipolar pulsing utilizes a power supply

operating at low (or zero) power level most of the time but pulsing to a



significantly higher level for a short period (e.g., 50 – 100 µs) each cycle

(of length, e.g., 20ms) [Kouznetsov et al., 1999]. This way a substantial

increase in the instantaneous plasma density is achieved without increas-

ing the thermal load of the target. Considerable research has been done

on this system in recent years. Langmuir probes have been used to record

the temporal behavior of the plasma parameters in the substrate vicinity

and very high electron densities (ne ≈ 6 × 1018 m−3) have been obtained

[Gudmundsson et al., 2001, 2002]. Furthermore, evidence of improved tar-

get utilization has been presented [Kouznetsov et al., 1999] and ionization

fractions of sputtered species of 40% for a Ti0.5Al0.5 target [Macák et al.,

2000], 60% for a Ta target [Helmersson et al., 2000], 30% for a Cr target

[Ehiasarian et al., 2002] and 90% for a Ti target [Bohlmark et al., 2003] have

been reported. This high degree of ionization of sputtered particles opens

up possibilities of trench filling applications in integrated circuit produc-

tion [Rossnagel and Hopwood, 1993] and increased use of ion-surface in-

teraction in designing new thin films [Wei et al., 2000]. Optical emission

spectroscopy has also been applied to investigate the time variations of

ion and neutral emissions in the target vicinity [Ehiasarian et al., 2002].

Although promising results have been obtained using unipolar pulsed

magnetron devices, the dynamics of ion transport in the system have yet

to be explained. Insight can be gained from nonlinear fluid theory (section

2.2) and the concepts of solitary waves and solitons.



Figure 1.3: A solitary wave in an aqueduct of the Union Canal created on
the occasion of a Conference on Nonlinear Coherent Structures in Physics
and Biology in 1995. (Photo by K. Paterson).

1.2 Solitary waves and solitons

The first documented observation of a solitary wave was made by a Scot-

tish engineer, John Scott Russell, in August 1834, when he saw “. . . a large

solitary elevation, a rounded, smooth and well-defined heap of water . . . ”

detach itself from the prow of a barge brought to rest and proceed “. . . without

change of form or diminution of speed . . . ” for over two miles along the

Union Canal linking Edinburgh with Glasgow. These initial observations

were followed by extensive wave-tank experiments on the phenomenon.

[Remoissenet, 1996, p. 3].

At the time of their publication, the observations of Russell appeared to

contradict the nonlinear shallow-water wave theory of Airy (1845), which

predicts that a wave with elevation of finite amplitude cannot propagate

without change of form: it steepens and eventually breaks. On the other
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Figure 1.4: The formation of a solitary wave (right) is the result of a balance
between the effects of dispersion (top left) and nonlinearity (bottom left).

hand, Stokes (1874) showed that waves of finite amplitude and permanent

form are possible in deep water, but they are periodic.

The controversy over Russell’s observations arises because the non-

linear shallow-water theory neglects dispersion, which generally tends to

prevent wave steepening. It was resolved by Joseph Boussinesq (1871) and

independently by Lord Rayleigh (1876), who showed that, if one ignores

dissipation, the steepening of the wave can be balanced by the dispersion, leading

to a wave of permanent form. This effect is shown schematically in figure 1.4

and elaborated on in section 2.1.

In 1895 Korteweg and de Vries derived a model equation (incorporat-

ing the effects of surface tension) which describes the unidirectional prop-

agation of long waves in water of relatively shallow depth. This equation

has become much celebrated and is now known as the Korteweg-de Vries

equation or KdV for short:

∂u

∂t
+ αu

∂u

∂x
+ β

∂3u

∂x3
= 0, α, β constants. (1.1)



Korteweg and de Vries showed that periodic solutions, which they named

cnoidal waves, could be found in closed form and without further approx-

imations [Remoissenet, 1996, p. 5 – 6]. Moreover, they found a localized

solution

u(x, t) =
3v

α
sech2

[

1

2

√

v

β
(x − vt)

]

, (1.2)

which represents a single hump of elevation 3v/α, traveling with veloc-

ity v. This hump is the solitary wave discovered experimentally by Scott

Russell.

For a long time, the solitary wave was considered a rather unimportant

curiosity in the mathematical structure of nonlinear wave theory. It was

however brought into the mainstream of research by Fermi, Pasta, and

Ulam [1955]. They were exploring heat-transfer in crystal lattices with

nonlinear interactions, by computer simulations and found, much to their

surprise, that the system showed very little tendency toward equipartition

of energy among the degrees of freedom. They applied a large amplitude

sinusoidal signal as an initial condition. Due to the nonlinearity of the

structure, it was expected that harmonics would develop and all of the

energy would be randomly thermalized as time progressed. This ther-

malization was found in their calculation for the first time steps but at a

certain time most of the energy “recurred” to the fundamental mode and

the original sinusoidal signal reappeared. This process then repeated itself

[Lonngren, 1983].

The unexpected results of Fermi, Pasta and Ulam motivated Zabuski

and Kruskal [1965] to re-investigate the problem. By a continuum ap-



proximation this led them to study the KdV equation. From numerical

simulations they found that robust pulse-like waves can propagate in a

system modeled by such an equation. Zabusky and Kruskal coined the

word soliton to describe these particle-like solitary waves, which can col-

lide with each other and preserve their identities after the collision. In

most of the physics literature the terms solitary wave and soliton are used

interchangeably but in this work we shall confine ourselves to the latter

one.

Gardner et al. [1967] made an important contribution to the develop-

ment of the theory. They showed that, if the initial shape of the wave is

sufficiently localized the analytical solution of the KdV equation can be ob-

tained. Their solution shows that, given sufficiently long time, the initial

pulse evolves into one or more solitons and a dispersive small-amplitude

tail. The total number of solitons depends on the initial shape. These

theoretical results were in remarkable agreement with many of the experi-

mental results obtained by John Scott Russell more than one hundred and

fifty years earlier [Remoissenet, 1996, p. 7 – 8].

1.3 Ion-acoustic solitons in plasma

In 1966 Washimi and Taniuti [1966] showed that a collision-less plasma of

cold ions and warm electrons can be modeled by the KdV equation. They

started out with a simplified subset of the plasma fluid equations (section



2.2) expressed in normalized quantities (section 2.3):

∂n′

i

∂t′
+

∂

∂x′
(n′

iu
′

i) = 0 (1.3)

∂u′

i

∂t′
+ u′

i
∂u′

i

∂x′
= E ′ (1.4)

∂n′

e

∂x′
= −n′

eE
′ (1.5)

∂E ′

∂x′
= n′

i − n′

e (1.6)

in which n′

i and n′

e denote the densities of ions and electrons, respectively,

u′

i is the flow velocity of ions, E ′ is the electric field, x′ is the space coor-

dinate and t′ the time variable. By mathematical manipulations (section

2.3) they showed that the system (1.3)–(1.6) can be simplified to the KdV

equation
∂n1

∂η
+ n1

∂n1

∂ξ
+

1

2

∂3n1

∂ξ3
= 0, (1.7)

where n1 is a first order perturbation of the ion density n′

i and η and ξ are

scaled time and space variables, respectively. This result was a prediction

of the existence of ion-acoustic solitons.

Ion-acoustic solitons were first observed experimentally in a double-

plasma device (chapter 3) by Ikezi et al. [1970]. Since the initial observa-

tion, they have been the subject of numerous experiments. These include:

multiple soliton production in a double-plasma device [Hershkowitz et al.,

1972; Ikezi, 1973]; excitation of cylindrical [Hershkowitz and Romesser,

1974] and spherical [Ze et al., 1979a] ion-acoustic solitons; wide soliton

generation in an ion-beam-plasma system [Lee et al., 1996]; and ion-acoustic



shock formation in a Q-machine with negative ions [Takeuchi et al., 1998]

and in a dusty double-plasma device [Nakamura et al., 1999].

Recently, a report on the temporal behavior of the electron density in

a unipolar high-power pulsed magnetron sputtering device, with a tanta-

lum target, showed some interesting features [Gudmundsson et al., 2002].

In figure 1.5 we reprint two of their graphs showing the electron density in

the device as a function of time from pulse initiation. Figure 1.5 (a) shows

the effect of background pressure, in the range 5 – 20 mTorr, on the elec-

tron density at 9 cm below the target. In general the plot shows an increase

in electron density with increased pressure. Looking more closely at the

time evolution, considerable structure is seen in the signal. The first 400

µs are dominated by rapid fluctuations at all pressures. Beyond the initial

fluctuations, a hump at approximately 600 µs, growing with increasing

pressure, is noticed. This phenomenon remains unexplained. Figure 1.5

(b) shows the initial electron peaks at 2 mTorr in more detail and follows

their evolution from 9 to 17 cm below the target. They noticed that these

peaks are traveling away from the target at a fixed velocity. This obser-

vation of electron density waves triggered the work described here. Our

aim is to show that these waves are in fact ion-acoustic solitons of the type

modeled by Washimi and Taniuti.
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Figure 1.5: Electron density ne as a function of time t from pulse initiation:
(a) at 9 cm below the target for gas pressure of 5, 10 and 20 mTorr and (b)
at a pressure of 2 mTorr for the first 500 µs at 9, 13 and 17 cm below the
target. The magnetron was operated with a tantalum target. The voltage
pulse length was 100 µs and the average power 300 W [Gudmundsson
et al., 2002].



Chapter 2

Waves in plasma

Most of the engineering feats of the twentieth century were accomplished

using linear models of the physical world. In some cases, e.g., electro-

magnetism, the linear models are highly successful in predicting observed

behavior, but in others we are faced with phenomena that are inherently

nonlinear and can therefore not be grasped with the help of a linear model.

In this chapter we shall give a compact overview of such a phenomenon:

ion-acoustic solitons in plasma. First a brief discussion is given on waves

in nonlinear dispersive systems. This is followed by a review of how a

plasma can be modeled as a fluid. Finally we show how the Korteweg-

de Vries equation is used to describe one-dimensional finite amplitude ion

waves in a plasma.



2.1 A brief review of waves

The soliton concept depends on familiarity with the effects of dispersion

and nonlinearity and thus a brief review of waves, in systems dominated

by these properties, is in order. By referring to examples from transmission

line theory, we will present a mostly qualitative discussion.

2.1.1 Linear systems without dispersion

dx

ldx

cdxu(x) u(x+dx)

u(x,t)

x

t

Figure 2.1: A linear transmission line with distributed inductance l and
capacitance c, per unit length (top), and a general pulse traversing the line
(bottom).

As our first example consider a general pulse traversing a linear trans-

mission line modeled by a distributed inductance l and a distributed ca-

pacitance c, a simple linear system without dispersion. By applying Kirch-

hoff’s voltage law to the model in figure 2.1 we find that the voltage wave



u(x, t) traversing the line must satisfy the wave equation

∂2u

∂t2
− v2

0

∂2u

∂x2
= 0, v0 =

1√
lc

. (2.1)

Assume solutions of the form

u(x, t) = u0 cos k(x − v0t) = u0 cos(kx − ωt) (2.2)

and we get the dispersion relation

ω = v0k, (2.3)

i.e. different frequency components of the pulse travel with the same

speed and the pulse retains its form (figure 2.1) [Remoissenet, 1996, p. 12

– 15].

2.1.2 Linear dispersive systems

We now add dispersion to our transmission line model by taking induc-

tion between conductors into account (figure 2.2). The wave equation for

a linear transmission line with parallel induction is

∂2u

∂t2
− v2

0

∂2u

∂x2
+ ω2

0u = 0, ω2
0 =

1

l2c
. (2.4)

Again we assume solutions of the form

u(x, t) = u0 cos(kx − ωt) (2.5)
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t

Figure 2.2: A linear dispersive transmission line with distributed induc-
tance l and capacitance c, in parallel with an inductance l2, per unit length
(top), and a general pulse traversing the line (bottom).

and get the dispersion relation

ω =
√

ω2
0 + v2

0k
2. (2.6)

In contrast to the non-dispersive line, different frequency components travel

with different speeds and the pulse in figure 2.2 is dispersed as it moves

through the system [Remoissenet, 1996, p. 21 – 23].

2.1.3 Nonlinear systems without dispersion

In comparison with the last case, consider a nonlinear system without dis-

persion. An example is the transmission line shown in figure 2.3, with a

voltage dependent capacitance c(u) = C0(1−2bu) between conductors (C0



dx

ldx

u(x) u(x+dx)c(u)dx

u(x,t)

x

t

Figure 2.3: A nonlinear non-dispersive transmission line with distributed
inductance l and a voltage dependent capacitance c(u) per unit length
(top) and a general pulse traversing the line (bottom).

and b constants). It can be described by the equation

∂2u

∂t2
− 1

lC0

∂2u

∂x2
=

∂2u2

∂t2
. (2.7)

One can show that the solution has the form

u(x, t) = f{x ± [lc(u)]−
1

2 t} (2.8)

and that the velocity of propagation depends on the amplitude

v = [lc(u)]−
1

2 =
1

√

lC0(1 − 2bu)
, (2.9)

i.e., the top of the pulse in figure 2.3 moves faster than the base resulting

in a steepening of the wavefront [Remoissenet, 1996, 37 – 41].



2.1.4 Nonlinear dispersive systems

un(x) un+1(x)C(un+1)

L

u(x,t)

x

t

Figure 2.4: A discrete transmission line (network) with an inductance L
and a voltage dependent capacitance C(u), per unit section (top), and a
general pulse traversing the line (bottom).

Now we consider a system that exhibits both nonlinear and dispersive

behavior. An example is a discrete transmission line with a voltage depen-

dent capacitance C(u) = C0(1− 2bu) and inductance L in each unit section

shown in figure 2.4. It can be described by the equation

∂2u

∂t2
−

(

δ2

LC0

)

∂2u

∂x2
=

(

δ4

12LC0

)

∂4u

∂x4
+ b

∂2u2

∂t2
, (2.10)

where δ represents a hypothetical unit cell length. The dispersive and non-

linear terms on the right can cancel each other leading to a solution of

permanent form

u(x, t) =
3

2b

v2 − v2
0

v2
sech2

[

√

3(v2 + v2
0)

v0

(x − vt)

δ

]

, (2.11)



where v is the velocity of the soliton and v0 = δ/
√

LC.

For waves traveling with a small amplitude in one direction, equation

(2.10) simplifies to the Korteweg-de Vries equation

∂u

∂t
+ αu

∂u

∂x
+ β

∂3u

∂x3
= 0, α, β constants, (2.12)

using a mathematical method termed the reductive perturbation technique

[Remoissenet, 1996, 41 – 42] (section 2.3).

2.2 Modeling plasma as a fluid

A partially ionized plasma consists of electrons, ions, and neutral atoms

and/or molecules. The particles interact through collisions and electro-

magnetic fields. Their interactions can be studied at the particle level but

to the plasma processing experimentalist a useful model is expressed in

easily measurable quantities such as fluid velocity and particle density.

The rigorous development of the theory from particle level to the fluid

model of a plasma is the subject of many fine books on plasma physics

[Nicholson, 1983; Chen, 1984; Dendy, 1993] but in this section we shall

present the results relevant to our subject.

The traditional approach to the development of the fluid model starts

with the exact description of the motion of each particle in form of the

Klimontovich equation [Nicholson, 1983, chapter 3]. If there are N particles

in three-dimensional space, and each particle has a position and a veloc-

ity, the total number of coordinates is 6N . A typical plasma density might



be 1016 ion-electron pairs per m3 so the calculations quickly become in-

tractable. The solution is to use an approximate statistical theory formu-

lated in the Vlasov equation

∂f

∂t
+ v · ∂f

∂x
+

q

m
(E + v × B) · ∂f

∂v
= 0, (2.13)

where m is the mass and q is the charge of the species under consideration.

E and B are the electric and magnetic fields respectively and f(x, v, t) is

a velocity distribution function such that

f(x, v, t)dxdydzdvxdvydvz (2.14)

is the number of particles in the volume element dxdydz at the position x,

and in the element dvxdvydvz in velocity space with the velocity v, at time t

[Nicholson, 1983, chapter 6]. The fluid theory is then developed by taking

the first few velocity moments of the Vlasov equation [Nicholson, 1983,

p. 129] and when combined with Maxwell’s equations the fluid equa-

tions provide a complete, but approximate, description of plasma physics.

The following discussion introduces the fluid equations heuristically and

closely follows Chen [1984, chapter 3].

2.2.1 Equation of continuity

In the fluid approximation, we consider the plasma to be composed of

two or more inter-penetrating fluids, one for each species of particles. The

conservation of matter requires that the total number of particles N in a



volume V can change only if there is a net flux of particles across the sur-

face S bounding that volume. If n is the particle density and u is the fluid

velocity then the particle flux density is nu. As a result we have, by the

divergence theorem,

∂N

∂t
=

∫

V

∂n

∂t
dV = −

∮

nu · dS = −
∫

V

∇ · (nu)dV. (2.15)

Since this must hold true for any volume V , the integrands must be equal

and thus:
∂n

∂t
+ ∇ · (nu) = 0. (2.16)

There is one such equation of continuity for each species. Any sources

or sinks of particles are to be added to the right-hand side. The rigorous

derivation of the continuity equation is done by taking the zeroth order

velocity moment of the Vlasov equation [Elliot, 1993, p. 39].

2.2.2 The fluid equation of motion

Maxwell’s equations give us the electric field E and the magnetic field B

for a particular state of the plasma. To solve the self-consistent problem,

we must also have an equation giving the plasma’s response to given E

and B fields. In the simplest case, a fully ionized plasma with only one

species of ions, we shall need two equations of motion, one for the positive

ion fluid and one for the negative electron fluid. A more rigorous descrip-

tion of a partially ionized gas would also include an equation for the fluid

of neutral atoms and/or molecules. The neutral fluid interacts with the



ions and electrons only through collisions and will not be considered here

since we are only interested in plasma at low pressure. The ion and elec-

tron fluids will interact with each other even in the absence of collisions,

because of the E and B fields they generate.

Assume first that there are no thermal motions. Newton’s second law

of motion for the plasma fluid is then

mn

[

∂u

∂t
+ (u · ∇)u

]

= qn(E + u × B). (2.17)

In the convective derivative on the left, the ∂u/∂t represents an acceleration

due to an explicitly time-varying fluid velocity u and the second “iner-

tial” term (u · ∇)u represents an acceleration even for a steady fluid flow

(∂u/∂t = 0) having a spatially varying u [Lieberman and Lichtenberg,

1994, p. 34].

When thermal motions are taken into account, a pressure force has to

be added to the right-hand side of equation (2.17). This force arises from

random motion of particles in and out of a fluid element. The fluid equa-

tion then becomes

mn

[

∂u

∂t
+ (u · ∇)u

]

= qn(E + u × B) − ∇p (2.18)

where ∇p is the isotropic pressure gradient force. Rigorously, the fluid

equation of motion is derived by taking the first order velocity moment

of the Vlasov equation [Elliot, 1993, p. 40]. The equation describes the

conservation of momentum.



2.2.3 Equation of state

One more relation is needed to close the system of equations. For this, we

can use the thermodynamic equation of state relating p to n:

p = Cnγ , (2.19)

where C is a constant and γ is the ratio of specific heats Cp/Cv. The term

∇p is therefore given by
∇p

p
= γ

∇n

n
. (2.20)

For isothermal compression, we have

∇p = ∇(nkT ) = kT∇n, (2.21)

where k is the Boltzmann constant and T is the temperature of the species,

so that γ = 1. The thermodynamic equation of state is rigorously derived

by taking the second order velocity moment of the Vlasov equation and

describes the conservation of energy [Elliot, 1993, p. 42].

2.2.4 The complete set of fluid equations

For a plasma with only two species, ions and electrons, the charge and

current densities are given by

σ = niqi + neqe, (2.22)

j = niqiui + neqeue. (2.23)



The complete set of fluid equations is then:

ε0∇ · E = niqi + neqe, (2.24)

∇ × E = −∂B

∂t
, (2.25)

∇ · B = 0, (2.26)

µ−1
0 ∇ × B = niqiui + neqeue + ε

∂E

∂t
, (2.27)

∂nj

∂t
+ ∇ · (njuj) = 0, j = i, e, (2.28)

mjnj

[

∂uj

∂t
+ (uj · ∇)uj

]

= qjnj(E + uj × B) − ∇pj, j = i, e,(2.29)

pj = Cjn
γj

j , j = i, e. (2.30)

There are 16 scalar unknowns: ni, ne, pi, pe, ui, ue, E and B. There are

apparently 18 scalar equations if we count each vector equation as three

scalar equations. However, two of Maxwell’s equations are superfluous,

since equations (2.24) and (2.26) can be recovered from the divergences of

equations (2.27) and (2.25) respectively. The simultaneous solution of this

set of 16 equations in 16 unknowns gives a self-consistent set of fields and

motions in the fluid approximation.

2.3 The Korteweg-de Vries equation

As introduced earlier, Washimi and Taniuti [1966] showed, by the reduc-

tive perturbation technique, that the Korteweg-de Vries equation describes

one-dimensional finite amplitude ion waves. They start by making a few

simplifying assumptions to reduce the number of fluid equations (2.24) –



(2.30). Their first assumption is to neglect the thermal motion of the ions

(cold ions). The fluid equations of ion motion (2.29) and continuity (2.28)

in this case are:

mi

(

∂ui

∂t
+ ui

∂ui

∂x

)

= −e
∂Φ

∂x
(2.31)

and
∂ni

∂t
+

∂(niui)

∂x
= 0, (2.32)

where the electric field E has been replaced with the negative derivative of

the potential −∂Φ/∂x. Next they assume isothermal electrons and hence

the electron equation of state (2.30) gives

pe = nekTe. (2.33)

Finally they ignore the electron mass (me = 0) and thus the electron equa-

tion of motion (2.29) yields

ene
∂Φ

∂x
=

∂ne

∂x
, (2.34)

which integrates to give Boltzmann distributed electrons

ne = n0 exp

(

eΦ

kTe

)

, (2.35)

where n0 is the equilibrium background density. The set of equations is

closed with Poissions’s equation (obtained from 2.24)

∂2Φ

∂x2
=

e

ε0

(

n0 exp

(

eΦ

kTe

)

− ni

)

. (2.36)



By changing to the following dimensionless variables the clutter of physi-

cal constants is removed:

x′ =

(

n0e
2

ε0kTe

)
1

2

x =
x

λD
, (2.37)

t′ =

(

n0e
2

ε0mi

)
1

2

t, (2.38)

Φ′ =
eΦ

kTe
, (2.39)

n′ =
ni

n0

, (2.40)

u′ =

(

mi

kTe

)
1

2

ui =
ui

cs
. (2.41)

In the new variables the set of equations becomes

∂u′

∂t′
+ u′

∂u′

∂x′
= −∂Φ′

∂x′
, (2.42)

∂n′

∂t′
+

∂n′u′

∂x′
= 0, (2.43)

∂2Φ′

∂x′2
= eΦ′ − n′, (2.44)

with boundary conditions n′ → 1, u′ → 0 and Φ′ → 0 as x′ → ∞.

To recover the KdV equation, the wave amplitude is expanded in terms

of a perturbation parameter δ and one order higher than linear kept. This

step restricts the validity of the derivation to small but finite-amplitude



waves. The expansion is:

n′ = 1 + δn1 + δ2n2 + · · · ,

Φ′ = δΦ1 + δ2Φ2 + · · · , (2.45)

u′ = δu1 + δ2u2 + · · · ,

Since only long waves are of interest, we transform to the scaled variables

ξ = δ
1

2 (x′ − t′) (2.46)

and

τ = δ
3

2 t′ (2.47)

so that

∂

∂t′
= δ

3

2

∂

∂τ
− δ

1

2

∂

∂ξ
, (2.48)

∂

∂x′
= δ

1

2

∂

∂ξ
. (2.49)

By operating with (2.49) on (2.45) and substituting into (2.44), it is found

that the lowest-order terms are proportional to δ and these give

Φ1 = n1. (2.50)

Doing the same in equations (2.42) and (2.43), it is found that the lowest-



order terms are proportional to δ
3

2 and these give

∂u1

∂ξ
=

∂Φ1

∂ξ
=

∂n1

∂ξ
. (2.51)

Since all vanish as ξ → ∞, integration gives

n1 = Φ1 = u1 ≡ U. (2.52)

Thus the normalization is such that all the linear perturbations are equal

and can be called U . Next the terms proportional to δ2 in equation (2.44)

and to δ5/2 in equations (2.42) and (2.43) are collected. This yields the set:

∂2Φ1

∂ξ2
= Φ2 − n2 +

1

2
Φ2

1, (2.53)

∂u1

∂τ
− ∂u2

∂ξ
+ u1

∂u1

∂ξ
= −∂Φ2

∂ξ
, (2.54)

∂n1

∂τ
− ∂n2

∂ξ
+

∂

∂ξ
(u2 + n1u1) = 0. (2.55)

Solving for n2 in (2.53) and for ∂u2/∂ξ in (2.54) and substituting into (2.55)

yields:

∂n1

∂τ
+

∂3Φ1

∂ξ3
− ∂Φ2

∂ξ
− 1

2

∂Φ2
1

∂ξ
+

∂u1

∂τ
+ u1

∂u1

∂ξ
+

∂Φ2

∂ξ
+

∂

∂ξ
(n1u1) = 0. (2.56)

Fortunately, Φ2 cancels out. By replacing all first-order quantities by U the

KdV equation is obtained:

∂U

∂τ
+ U

∂U

∂ξ
+

1

2

∂3U

∂3ξ
= 0. (2.57)



Thus, ion waves of amplitude one order higher than linear are described

by the Korteweg-de Vries equation. In experiments on ion-acoustic soli-

tons the value n1 is usually measured in terms of the relative density per-

turbation (n−n0)/n0, where n is the absolute density of the species and n0

is the quiescent background density. In the presentation of the derivation

we have followed Chen [1984, p. 331 – 336] and Dodd et al. [1982, p. 237 –

242].

Modified KdV equations describing one-dimensional solitons (depen-

dent only on radius r) with cylindrical [Maxon and Viecelli, 1974a] and

spherical [Maxon and Viecelli, 1974b] symmetry have also been derived.

2.4 Ion-acoustic soliton characteristics

Hershkowitz and Romesser [1974] summarized the distinguishing charac-

teristics of one-dimensional solitons. These features are common to one-

dimensional solitons in planar, cylindrical and spherical geometries and

provide a reference for comparison with experimental data:

1. Arbitrary positive (compressive) density perturbations evolve after

sufficient time into a superposition of spatially separated solitons.

2. The number and amplitude of the solitons is determined by the so-

lution of a time-independent Schrödinger equation with a potential

that is proportional to the initial spatial density perturbation. One

soliton is formed for each bound state with soliton amplitude pro-

portional to the energy eigenvalues.



3. In a plasma with background ion density n0 a soliton with a peak

density of npeak will travel with a velocity of

u = [1 + 1/3(δn/n0)]cs, (2.58)

where δn = npeak−n0 and cs = (eTe/mi)
1/2 is the ion acoustic velocity

(Te is the electron temperature expressed in the more practical units

of eV).

4. The spatial width D of a soliton is proportional to (δn/n0)
−1/2, which

implies

D2δn/n0 = constant. (2.59)

5. Solitons retain their identity upon collision with other solitons.

In addition to characteristic 2 it has been shown that to the continuous

spectrum of unbound states corresponds a linear oscillatory tail [Zabuski,

1968].

The energy of a soliton is proportional to (δn/n0)
2D. For non-planar

expanding solitons the energy will decay due to geometry as 1/r and 1/r2,

for cylindrical and spherical geometries, respectively. When combining

this geometrical decay with characteristic 4 we find that the soliton ampli-

tude will decay as
δn

n0

∝ rη, (2.60)

where r is the radius of the soliton and η = −2/3 for a cylindrical geometry

but η = −4/3 for a spherical geometry [Hershkowitz et al., 1979; Lonngren,



1983].



Chapter 3

Experimental observations

Since the initial observation of ion-acoustic solitons mentioned in section

1.3 [Ikezi et al., 1970], all experimental efforts have, to our best knowledge,

been performed using specially built soliton generation equipment. Most

experiments have been performed in some variation of the double-plasma

device used by Ikezi et al. In the double-plasma device a background ion

density is supplied by an electron gun filament, spraying ionizing elec-

trons into the inert gas. To increase the uniformity of the background

plasma, the vacuum chamber is often surrounded by one to two thousand

permanent magnets that trap the primary electrons. This enhancement is

referred to as the multidipole method [Lonngren, 1983]. In this chapter we

report on what we believe to be the first observation of ion-acoustic soli-

tons in a standard plasma processing system: a pulsed magnetron sputter-

ing device. The absence of an initial quiescent background plasma and a

very large soliton amplitude differentiates this method significantly from

earlier forms of soliton generation.



Figure 3.1: The pulsed magnetron system. The power supply is on the left
and can provide power up to 2.4 MW during a pulse width of 50 – 100
µs with a repetition frequency of 50 pulses per second. The stainless steel
sputtering chamber is on the right.

3.1 Experimental apparatus

The measurements were carried out in a high-power unipolar pulsed mag-

netron sputtering system at the Department of Physics and Measurement

Technology, Lingköping University, Sweden. Figure 3.1 shows a photo-

graph of the system. To the left is a novel type of pulsed power supply,

produced by Chemfilt R&D, Sweden, which is used in the experiment. It

can deliver peak power pulses of up to 2.4 MW (2000 V and 1200 A) at a

repetition frequency of 50 pulses per second (20 ms between pulses) and

pulse width in the range of 50 – 100 µs. A pulse width of approximately

70 µs and pulse energies in the range 3 – 6 J were used. To the right in the



Figure 3.2: Top view of the sputtering chamber. The balanced planar mag-
netron is mounted on the top lid of a cylindrically symmetric stainless steel
sputtering chamber of radius R = 24 cm and height L = 75 cm. The target
has a diameter of 150 mm.
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Figure 3.3: A schematic drawing of the experiment. The Langmuir probe
was mounted on a movable pole and the tip placed on the axis of the cham-
ber at distances r from the target in the range 4 – 9 cm. The probe was
biased to electron saturation with a constant Vb = 9V. The electron satura-
tion current Isat as a function of the time from pulse start t was measured
at each probe location.
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Figure 3.4: Probe current versus probe bias at an arbitrary time instance.
The floating potential is Φf = 0.4 V and the plasma potential is Φf = 2.4 V.
The pressure was 5 mTorr and pulse energy 6 J.

figure is the stainless steel sputtering chamber. It has a radius R = 24 cm

and height L = 75 cm. A close up photo of the chamber top lid is shown in

figure 3.2. In the center the power cabling and water cooling for the mag-

netron are visible. It is of the balanced planar type [Waits, 1978; Kelly and

Arnell, 2000] and was operated with a titanium target, 150 mm in diame-

ter. Argon of purity 99.9997% and pressure 5 mTorr was used as discharge

gas. The base vacuum pressure was approximately 1 × 10−6 Torr.

Electron density perturbations were detected using a cylindrical Lang-

muir probe made from a tungsten wire of length lpr = (5.0 ± 0.5) mm and

radius rpr = (50 ± 1) µm. Time curves of the probe current, target current

and target voltage were collected with a digital oscilloscope. The probe

was placed on the axis of the chamber as shown in figure 3.3 and mea-



surements were performed at distances r from the target in the range 4 – 9

cm. As with any other electrode in contact with a plasma, the probe is sur-

rounded by an electron-depleted region known as the sheath. The sheath

forms because the mobile electrons are more likely to be lost to the probe

surface than the heavy ions. A balance is reached by the build up of a

potential difference in the sheath region, referred to as the plasma potential

Φpl. For each time value the full I-V curve of the probe had previously

been measured [Alami et al., 2003b] and a representative measurement is

shown in figure 3.4. The upper kink in the curve occurs when the applied

probe bias reaches the plasma potential. This point is known as electron

saturation, since above it all current is carried by electrons. The slight in-

crease in probe current above electron saturation is due to an increasing

effective collection area.

Zero probe current occurs when electron and ion currents balance. The

probe bias at this point equals the potential at which an insulated probe,

that can not draw current, would float. It is aptly named floating potential

Φf. In the case of a pulsed discharge the plasma and floating potentials

are time dependent. The simplest way to estimate the electron density is

to ensure that the probe remains at electron saturation at all times. Then

the electron density, ne, can be taken to be proportional to the saturation

probe current, Isat (ignoring the influence of the changing effective collec-

tion area) [Lieberman and Lichtenberg, 1994, p. 174 – 175]

ne ∝ Isat. (3.1)



In this pursuit a constant probe bias of Vb = 9 V was applied to the probe.

Although we measure the electron density, our data represents ion-motion

as well since the assumption of quasi neutrality, ni ≈ ne, is valid on the

time scale considered. In fact the electron density can also be modeled

by the same KdV equation as the ions [Washimi and Taniuti, 1966], but

traditionally the KdV equation for ions is used. Direct comparison of the

temporal behavior of ion and electron densities in the system have shown

that electrons and ions behave similarly [Alami et al., 2003a].

3.2 Experimental results

Representative behavior of the probe electron saturation current Isat as a

function of time t from the initiation of the target voltage pulse, at dis-

tances r of 4, 6, and 8 cm below the target, is shown in figures 3.5 – 3.8. The

pulse energy is 3 J in figure 3.5, 4 J in figure 3.6, 5 J in figure 3.7, and 6 J in

figure 3.8. The curves are arbitrarily translated, for clarity, but in each indi-

vidual figure the curves are drawn to the same scale. All the curves show

similar behavior. Before the pulse, no probe current is measured since the

plasma from the last pulse has died out completely. Then, a few microsec-

onds after pulse initiation, one or more peaks traveling away from the tar-

get reach the probe. Each individual peak, that could clearly be identified,

is labeled with a number. In figures 3.5, and 3.8 only one peak was clearly

identifiable, two could be identified in figure 3.6 and three in figure 3.7.

Examining the curve at 4 cm in figure 3.7 more closely, we notice a strong

initial peak (labeled 1) traveling away from the target. In the trailing side
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Figure 3.5: Electron saturation current, measured by a Langmuir probe, as
a function of time from pulse initiation at locations 4, 6, and 8 cm below the
target. The curves are arbitrarily translated but drawn to scale. The argon
pressure was 5 mTorr, the target made of titanium, pulse length was ≈ 70
µs, and pulse energy 3 J. One individual peak (labeled 1) could clearly be
identified.
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Figure 3.6: Same measurement as in figure 3.5 for a pulse energy of 4 J.
Two individual peaks (labeled 1 and 2) could clearly be identified.
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Figure 3.7: Same measurement as in figure 3.5 for a pulse energy of 5 J.
Three individual peaks (labeled 1, 2, and 3) could clearly be identified.
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Figure 3.8: Same measurement as in figure 3.5 for a pulse energy of 6 J.
One individual peak (labeled 1) could clearly be identified.

of this first peak two other peaks (labeled 2 and 3) can be seen emerging.

The three initial peaks are followed by a temporally decaying oscillatory

tail of a lesser amplitude. At 6 cm the three peaks have separated further

and the second peak has become particularly visible. In all the figures the

peaks decay considerably while traveling from 4 to 8 cm, but retain their

identity. In contrast the oscillatory tail disperses quite rapidly and at 6 cm

it is barely visible. A precursor precedes the first peak at all pulse ener-

gies. Taylor et al. [1970] attribute this precursor to a group of streaming

ions reflected from the wave front. Similar phenomena were reported by

Ikezi et al. [1970]. The dip in probe current at time t = 0 is very probably

just interference from the target power supply. In general the behavior of

the peaks in figures 3.5 – 3.8 conforms with soliton characteristic 1 listed in



section 2.4, regarding an initial compressive density perturbation. Charac-

teristic 2 can not easily be verified since the exact form of the initial density

perturbation is unknown.

3.3 Discussion

The waveforms of target voltage Vtarget and target current Itarget for the mea-

surements of figures 3.5 – 3.8 are shown on the left axis in figures 3.9 – 3.12.

The corresponding peak trajectories are shown on the right axis of the fig-

ures. The target voltage rises abruptly at t = 0 µs but falls as the gas in

the chamber breaks down and the target current increases. The voltage

seems to reach a plateau close to 400 V at the time of peak target current.

The plateau level seems to decrease with higher pulse energy (and peak

current).

The first obvious feature of the peak trajectories is that all the peaks

travel with a fixed velocity. This velocity was determined using a least

squares fit. By extending the fitted line we find that the first peak for each

pulse energy is created in the time range of 10 – 30 µs after pulse initia-

tion and that the trend seems to be that at higher pulse energies the peaks

emerge sooner in the pulse. A similar trend can be seen in the time of

the target current peak. In the figures where more than one peak could

be discerned, and traced through the measurements at different distances

from the target, (figs. 3.10 and 3.11) two observations can be made. The

first one is that the velocity of a peak depends on its amplitude, i.e. larger

peaks travel faster than smaller peaks. This is typical for a nonlinear phe-



0 50 100 150
0

1

2

3

4

5

6

7

8

9

Peak 1
0

200

400

600

800

1000

1200

1400

1600

1800
Current
Voltage

PSfrag replacements
r

[c
m

]

V
ta

rg
et

[V
]o

r
I t

ar
ge

t
[A

]

t [µs]

Figure 3.9: The left axis shows the applied target voltage and current. The
right axis shows the position of the density peaks. Both are plotted versus
the time from pulse initiation. The argon pressure was 5 mTorr, the target
made of titanium, and the pulse energy 3 J. The maximum target current
occurs at t = 30 µs. The density peak travels with a fixed velocity of 4.3 ×
103 m/s and is formed roughly 30 µs after pulse initiation.



0 50 100 150
0

1

2

3

4

5

6

7

8

9

Peak 1
Peak 2

0

200

400

600

800

1000

1200

1400

1600

1800
Current
Voltage

PSfrag replacements

r
[c

m
]

V
ta

rg
et

[V
]o

r
I t

ar
ge

t
[A

]

t [µs]

Figure 3.10: Same plots as in figure 3.9 for pulse energy 4 J. The maximum
target current occurs at t = 30 µs. Density peak 1 travels with a velocity
of 3.2 × 103 m/s and is formed roughly 30 µs after pulse initiation. Peak
2 has a velocity of 1.9 × 103 m/s and is formed roughly 40 µs after pulse
initiation.
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Figure 3.11: Same plots as in figure 3.9 for pulse energy 5 J. The maximum
target current occurs at t = 28 µs. Density peaks 1 and 2 travel with ve-
locities of 2.4 × 103 m/s and 1.8 × 103 m/s respectively and are formed
roughly 20 µs after pulse initiation. Peak 3 has a velocity of 1.7 × 103 m/s
and is formed roughly 40 µs after pulse initiation.
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Figure 3.12: Same plots as in figure 3.9 for pulse energy 6 J. The maximum
target current occurs at t = 28 µs. The density peak travels with a velocity
of 1.9 × 103 m/s and is formed roughly 10 µs after pulse initiation.

nomenon. The latter observation is that the second peak can either emerge

at the same time as the first one or at a later time. The emergence of more

than one peak at the same time can be understood in terms of the n-soliton

solution of the KdV equation [Hershkowitz et al., 1972], i.e. multiple su-

perimposed solitons, created from the same initial density perturbation,

that spread out because of their relative velocity differences. The emer-

gence of a peak at a later time is harder to explain. One possible explana-

tion is that the peaks created at later times are in fact not due to argon ions

but to ionized sputtered metal atoms.

Sputtered metal atoms leave the target surface with relatively high

energies, typically on the order of a few eV. These atoms traverse the

dense plasma region in a few microseconds. In a conventional dc mag-

netron discharge the plasma density is too low and the traversing time



too short for appreciable ionization of the metal to occur. In contrast, in

the high power pulsed discharge the sputtered atoms can not penetrate

the dense plasma without collisions and significant ionization [Ehiasarian

et al., 2002]. Thus a high metal ion to neutral fraction is seen in this type

of discharge [Helmersson et al., 2000; Bohlmark et al., 2003]. Note that

only neutrals are sputtered from the target and all the titanium ions cre-

ated in the discharge are due to electron impact ionization, which depends

strongly on the electron temperature.

If the peaks created at later times are due to a different ion species

we can draw the conclusion from equation (2.58) that they should have

a different soliton velocity, since the ion-acoustic velocity depends on the

ion mass. Furthermore, if both ion species are existent in the plasma at the

same time, a modification of the KdV equation has to be made [Tran, 1974].

However our choice of target is not a very suitable one in this regard, since

titanium ions have only 20% higher mass than the argon ions, and we do

not have enough data to draw any conclusions from this. In what follows

we assume only argon ions. For reference, titan has a relative atomic mass

of 47.88 and an ionization energy of 6.82 eV. Argon has relative atomic

mass of 39.95 and an ionization energy of 15.8 eV, significantly higher than

that of titan.

Optical emission spectroscopy measurements of the system, with a

chromium target in an argon discharge at 3 mTorr, showed three distinct

stages. During the first 10 µs the emission is dominated by argon atom

lines when the breakdown occurs. Then, as Ar is ionized the plasma den-

sity and target current increase and Ar+ emission is detected. A few mi-



croseconds later Cr+ ions are detected and at approximately 30 µs after

the initiation of the pulse the Cr+ emission peaks [Ehiasarian et al., 2002].

Chromium has a relative atomic mass close to argon (52.00) and a ioniza-

tion energy close to titan (6.77 eV). A similar measurement of Ar and Ti

neutral lines also shows a time separation [Macák et al., 2000]. These re-

sults support the idea that the pulses created at later times might be due

to ionized metal but simultaneous optical and probe measurements would

be necessary to confirm this.

To get a more quantitative comparison of the observed soliton charac-

teristics with theory, we start by plotting the maximum density perturba-

tion δn/n0 of the first peak measured at various distances r from the mag-

netron target on a log-log scale in figure 3.13. Since our system lacks an

initial background plasma we take n0 to be proportional to the seemingly

stable probe current remaining after the solitons have past. This value in-

creases noticeably with increasing r, since the density addition from the

dispersing tail has a relatively large impact on the low background den-

sity level. To avoid the trend introduced by this effect an average of n0

over all r was used.

Intuitively one would expect a spherical symmetry of expanding waves

in our system since the diameter of the target (15 cm) is much smaller

than that of the chamber (48 cm). Waves originating at the target can thus

expand unrestricted into the half-sphere below. In fact observations of

spherical solitons, excited by a small circular plate, have been reported

[Hershkowitz et al., 1979]. The solid line in figure 3.13 has a slope of −4/3

and represents the prediction of equation (2.60) for a spherical soliton. At
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Figure 3.13: The maximum density perturbation δn/n0 of the leading peak
measured at various distances r from the magnetron target for pulse en-
ergies of 3 – 6 J. The process gas was argon at 5 mTorr and the target was
made of titanium. The solid line has a slope of −4/3.
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Figure 3.14: The relative changes in average background density n0/n0(3 J)
and in amplitude of the leading peak δn/δn(3 J) at 6 cm below the target,
versus pulse power.

distances greater than 5 cm below the target, the peaks follow the poly-

nomial decay model closely. Nearest to the target the decay is slower and

may be due to the fact that ionization is still active (the target current is

still sizable as seen in figures 3.9 – 3.12). At distances greater than 7 cm the

balance between nonlinearity and dispersion seems to tip in favor of the

latter and the decay increases as dispersion takes over. Similar behavior

has been observed for spherical solitons by Ze et al. [1979a].

It is interesting to note that in figure 3.13 the peaks at a pulse power of

3 J (the lowest value) have the largest density perturbation δn/n0. This is

due to the fact that although both the absolute value of the peak density

npeak, and the value of δn = npeak − n0, grow with increasing power, the

background density n0 grows even faster. The net result is that the ratio
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Figure 3.15: The velocity of the soliton peaks, shifted and normalized by
the ion-acoustic velocity, versus their maximum density perturbation at
6 cm below the target for pulse energies of 3 – 6 J. The process gas was
argon at 5 mTorr and the target made of titanium. The solid line shows
the relation (u − cs)/cs = 1/3δn/n0.

δn/n0 actually decreases with increasing power. This effect is presented in

figure 3.14, which shows the relative changes in n0, and δn at 6 cm below

the target, with increasing pulse power. Optical emission spectroscopy

measurements of the system have also showed increased ionization with

increased peak target current for a chromium target in an argon discharge

at 3 mTorr [Ehiasarian et al., 2002].

Next we examine the soliton velocity relation of characteristic 3. We

plot the velocity of the soliton peaks, shifted and normalized by the ion

acoustic velocity, versus the maximum density perturbation of each peak,

at 6 cm below the target, for different pulse energies in figure 3.15. The

later peaks are included in the figure for the energy values at which mul-



tiple peaks could be measured. The solid line shows the prediction of

equation (2.58. Since in our system we do not have an auxiliary supply

of background plasma, we can not simply measure the ion-acoustic ve-

locity by exciting a small amplitude wave. Thus to get a value for cs we

need an estimate of the electron temperature. The time evolution of the

electron energy probability function in the same experimental setup, us-

ing a tantalum target, has been studied by Gudmundsson et al. [2002]. In

light of those results we estimate an electron temperature of Te = 0.3 eV

at 5 mTorr, for the colder bulk plasma remaining after the solitons have

past. The value of n0 is found by averaging over all r as before. The fig-

ure clearly demonstrates that the peaks with largest density perturbation

have the highest velocity. The observed relation is linear but the constant

of proportionality is close to α = 0.1, slightly lower than the α = 1/3 to

be expected for a one dimensional soliton. It should be noted that the un-

certainty in the electron temperature affects only the slope of the line but

does not change the fact that the observed relation is linear. We suggest

that the discrepancy in the velocity relation could be due to the fact that

the density perturbation observed is two orders of magnitude higher than

what previously has been reported [Ikezi et al., 1970; Hershkowitz et al.,

1979; Lee et al., 1996] and since Washimi and Taniuti [1966] assume a small

perturbation in their derivation the simple model presented in section 2.4

may not fully apply. Previous experiments on cylindrical and spherical

solitons have also shown even greater departure from the model. A value

of α = 1 was reported for expanding cylindrical solitons [Hershkowitz

and Romesser, 1974] and values of 1.5 [Hershkowitz et al., 1979], 0.4 [Ze
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Figure 3.16: The square of the normalized spatial width of the soliton
peaks versus the inverse maximum density perturbation for pulse ener-
gies of 3 – 6 J. The process gas was argon at 5 mTorr and the target made
of titanium.

et al., 1979a], and 0.3 [Ze et al., 1979b] have been reported for expanding

spherical solitons.

Finally we examine characteristic 4, the relation between soliton spa-

tial width D and the maximum density perturbation δn/n0. The width

was measured as follows. First the full width at the half maximum was

measured from the temporal signal shown in figures 3.5 – 3.8. Next the

spatial width was obtained by multiplying the temporal width with the



velocity of the soliton [Nakamura and Sugai, 1996]. We plot (D/λDe)
2 ver-

sus (δn/n0)
−1 in figure 3.16. The width is scaled by the electron Debye

length λDe. Each sub-plot gives a trace from 4 to 9 cm below the target for

one pulse energy. The absolute value of the electron density after the soli-

tons have past is estimated 2 × 1017 m−3 at 5 mTorr [Gudmundsson et al.,

2002]. This value is only needed to estimate the electron Debye length and

corresponds to a value of λDe = 9 µm. For n0 we use an average over all

r. According to theory, (D/λDe)
2 should depend linearly on (δn/n)−1. The

figures clearly indicates this property for each pulse energy. We can also

clearly see the effect that the deviation from the decay property, shown in

figure 3.13, has on the relation. At low (δn/n0)
−1 (high δn/n0 and and close

to the target) the peaks show the linear predicted relationship. For higher

values of (δn/n0) (far from the target) the dispersion takes over and the

width of the peaks increases beyond what to be expected. The collision

property (characteristic 5) can not be tested with this configuration since

only one source of solitons is present.

In summary, we observe a positive density perturbation that evolves

into multiple solitons that travel with a fixed velocity away from the mag-

netron target. The rate of decay of the soliton amplitude indicates spher-

ical symmetry. Although the density perturbation is higher than previ-

ously reported, the simple model presented predicts the observed behav-

ior quite well. The soliton velocities depend linearly on amplitude and the

square of the spatial width is proportional to the inverse amplitude.



Chapter 4

Conclusions

An overview of sputtering devices was given, with emphasis on the mag-

netron sputtering method. We introduced a refinement of the magnetron

method, known as unipolar pulsed magnetron sputtering, and elaborated

on its superiority to conventional dc magnetron sputtering devices re-

garding target utilization and ionization of sputtered particles. A short

overview of recent experimental work on the system was given.

The properties of waves in nonlinear and dispersive systems were re-

viewed and the fluid model of a plasma was introduced. We derived the

Korteweg-de Vries equation describing planar ion-acoustic waves of fi-

nite amplitude and examined the characteristics of one-dimensional ion-

acoustic solitons in a plasma.

Experimental evidence for the existence of ion-acoustic solitons in a

unipolar pulsed magnetron discharge was given and thus a new method

for generating ion-acoustic solitons of high amplitude, without the pres-

ence of a quiescent background plasma has been presented. We confirmed



that the solitons generated fulfill the basic properties of the soliton solu-

tion of the Korteweg-de Vries equation in a spherical geometry.

Our measurements suggest that soliton peaks emerge at two differ-

ent times after the initiation of the magnetron target pulse. Comparison

with optical emission spectroscopy data lead to speculation of weather

the peaks created at later times might consist mainly of ionized sputtered

metal atoms. If true this could pave the way for interesting temporal con-

trol of the ion flux to the substrate during coating. Further optical emis-

sion measurements combined with probe measurements are necessary to

resolve this issue.
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