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Introduction

The demand for new materials and layer structures has
lead to development of more advanced sputtering systems
When the flux of ions is higher than the flux of neutrals or
Γ+ > Γm the process is referred to as ionized physical
vapor deposition (IPVD)
In magnetron sputtering discharges this is achieved by

increasing the power to the cathode (high power pulse)
a secondary discharge between the target and the
substrate (rf coil or microwaves)
reshaping the geometry of the cathode to get more focused
plasma (hollow cathodes)

Common to all highly ionized magnetron sputtering
techniques is a very high density plasma
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Ionized Physical Vapor Deposition (IPVD)

In conventional dc magnetron sputtering the majority of
ions are the ions of the inert gas
The sputtered vapor is mainly neutral, the ionization
fraction of the sputtered material is low ( ∼ 1%)

The neutral metal ejected exhibits a cosine angular velocity
distribution
Over the last decade new ionized vapor deposition
techniques have appeared that achieve 50 – 90 %
ionization of the sputtered material
The development of ionized physical vapor deposition
(IPVD) devices was mainly driven by the need to deposit
metal layers and diffusion barriers into trenches or vias of
high aspect ratios. (Hopwood, 1998)
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Ionized Physical Vapor Deposition (IPVD)

The metal ions can be accelerated to the substrate by
means of a low voltage dc bias

The metal ions arrive at the substrate at normal incidence
and at specific energy
The energy of the ions can be tailored to obtain impinging
particles with energies comparable to typical surface and
molecular binding energies

Ionizing the sputtered vapor has several advantages:

improvement of the film quality
control of the reactivity
deposition on substrates with complex shapes and high
aspect ratio
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Ionized Physical Vapor Deposition (IPVD)

The system design is determined by the average distance
a neutral particle travels before being ionized
The ionization mean free path is

λiz =
vs

kizne

where
vs is the velocity of the sputtered neutral metal
kiz is the ionization rate coefficient
ne is the electron density
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Ionized Physical Vapor Deposition (IPVD)

This distance has to be short

vs has to be low - thermalize the sputtered flux - increase
discharge pressure
ne has to be high

vs [eV] Te [eV] ne [m−3] λiz [cm]

1.5 3 1× 1017 333
0.05 3 1× 1017 61
0.05 3 1× 1018 6.1
0.05 3 1× 1019 0.61
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Ionized Physical Vapor Deposition (IPVD)

Another important parameter is the fractional ionization of
the metal flux

Γi

Γi + Γn

The ion flux to the substrate is

Γi ≈ 0.61nm+uB ∼
√

Te

The flux of thermalized neutrals is

Γn =
1
4

nmvTh ∼
√

Tg

Since Te � Tg the fractional ionization of the metal flux is
larger than the fraction of ionized metal in the plasma
It is not necessary to completely ionize the sputtered metal
to create a highly ionized flux to the substrate
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Planar magnetron sputtering discharge

Magnetron sputtering discharges are widely used in thin
film processing
A magnet is placed at the back of the cathode target with
the pole pieces at the center and perimeter
A magnetic field confines the energetic electrons near the
cathode, where they undergo numerous ionizing collisions
before being lost to a grounded surface
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Planar magnetron sputtering discharge

A typical dc planar magnetron discharge operates at a
pressure of 1 – 10 mTorr with a magnetic field strength of
0.01 – 0.05 T and at cathode potentials 300 – 700 V
Electron density in the substrate vicinity is in the range
1015 − 1016 m−3
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Planar magnetron sputtering discharge

Conventional magnetron sputtering processes are limited
low target utilization
target thermal load limits the available current
low fraction of the sputtered material is ionized

Several sputtering systems have been
designed to increase the ion flux at the
substrate
They include

pulsing the applied target voltage
additional ionization by a secondary
discharge (rf or microwave)
increased magnetic confinement
reshaping the cathode for more
focused plasma (hollow cathode)
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Secondary discharge in a magnetron sputtering discharge

A secondary discharge is placed between the target and
the substrate in a magnetron sputtering discharge

Inductively coupled plasma (ICP) discharge
Electron cyclotron resonance (ECR) discharge
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Secondary - Inductively coupled discharge (ICP-MS)

In order to generate highly ionized
discharge a radio-frequency
discharge can be added in the region
between the cathode and the anode
(Rossnagel and Hopwood, 1993, 1994; Wang et al., 1997)
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Secondary - Inductively coupled discharge (ICP-MS)

The ionization fraction increases and
saturates with increased rf power
The ionization fraction saturates in
the range 20 – 80 % depending on
the discharge pressure and target
material
Global (volume averaged) model
study

confirms the measured ionization
fraction
indicates that electron impact
ionization of the metal atoms
dominates for electron density
above 1017 m−3

(Hopwood, 2000)

(After Wang et al. (1999))

(After Hopwood (2000))
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Secondary - Electron cylclotron resonance discharge
(ECR-MS)

A supplementary electron cyclotron
resonance (ECR) discharge can be
used to increase the ionization of
the sputtered metal.
ECR discharges are typically
operated at microwave frequencies
(e.g., ∼ 2.45 GHz) with a strong
magnetic field B, giving high plasma
densities (1017 − 1018 m−3) and are
commonly operated at low working
pressures (0.1–10 mTorr).

(From Takahashi et al. (1988))

(After Xu et al. (2001))

(From Yonesu et al. (1999))
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Secondary - Electron cylclotron resonance discharge
(ECR-MS)

An ECR-MS apparatus, the
two ECR discharge
chambers are located at the
opposite sites of the main
processing chamber.
A highly ionized plasma is
created in the region between
the target and the substrate.
(Musil et al., 1991; Takahashi et al., 1988; Xu et al.,

2001) (After Xu et al. (2001))
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Secondary discharge in a magnetron sputtering discharge

In these discharges nAr � nM and the particle balance for
the Ar plasma dictates the the electron temperature.
For ICP and ECR discharges ne ∼ 1017 − 1018 m−3 so

λiz ∼ a few cm

if the sputtered vapor is thermalized

For ne � 1017 m−3, Penning ionization is the dominating
process for metal ionization
for ne � 1017 m−3 the metal ions are generated by electron
impact ionization. (Hopwood, 2000)

A high level of metal ionization is to be expected since the
metals (Cu, Ti, Al, Ta) have ionization potentials in the
range 6 – 8 V, significantly lower than for the used inert
sputtering gas atoms used.
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High power impulse magnetron sputtering discharge (HiPIMS)

In a conventional dc magnetron discharge
the power density is limited by the
thermal load on the target
Most of the ion bombarding energy is
transformed into heat at the target
In unipolar pulsing the power supply is at
low (or zero) power and then a high
power pulse is supplied for a short period
The high power pulsed magnetron
sputtering discharge uses the same
sputtering apparatus except the power
supply
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HiPIMS - Power supply

The high power pulsed discharge operates with a
Cathode voltage in the range of 500-2000 V
Current densities of 3-4 A/cm2

Power densities in the range of 1-3 kW/cm2

Frequency in the range of 50 – 1000 Hz
Duty cycle in the range of 0.5 – 5 %
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HiPIMS - Power supply

0.5 mTorr (solid line), 2 mTorr (dashed line) and 20 mTorr (dot dashed line)

(After Gudmundsson et al. (2002))

The exact pulse shape is determined by the load
the discharge formed
it depends on the gas type and gas pressure
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HiPIMS - Electron density

(After Bohlmark et al. (2005))

Temporal and spatial variation of the electron density
Argon discharge at 20 mTorr with a titanium target
The electron density in the substrate vicinity is of the order
of 1018 − 1019 m−3
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HiPIMS - Ionization fraction

There have been conflicting reports on
the ionized flux fraction

70 % for Cu (Kouznetsov et al., 1999)
40 % for Ti0.5Al0.5 (Macák et al., 2000)
9.5 % for Al (DeKoven et al., 2003)
4.5 % for C (DeKoven et al., 2003)

The degree of ionization
90 % for Ti (Bohlmark et al., 2005) (From Bohlmark et al. (2005))
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HiPIMS - Ionization fraction

To explore the ionization mechanism and the temporal
behavior of the plasma parameters a time dependent
global (volume averaged) model was developed

The discharge is assumed to consist of

electrons, e
argon atoms in the ground state, Ar
metastable argon atoms, Ar∗

argon ions, Ar+

metal atoms, M
metal ions, M+
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HiPIMS - Ionization fraction

The calculated electron and ion density
versus time for Al target
The first 100 µs electron impact
ionization is the most effective process
in creating metal ions
The ionized flux fraction is ∼ 99 %
(Gudmundsson, 2007)

From

Ehiasarian et al. (2002)

The measured
emission from
a discharge
with a Cr target
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HiPIMS - Ion energy

The time averaged ion
energy distribution for Ar+

and Ti+ ions
The gas pressure was 3
mTorr, pulse energy 3 J
and 10 J and the target
made of Ti
The ion energy distribution
is broad to over 100 eV
About 50 % of the Ti+

ions have energy > 20 eV (From Bohlmark et al. (2005))



IPVD

HiPIMS - Deposition rate

Several groups report on a significantly
lower deposition rate for HIPIMS as
compared to dcMS

a factor of 2 lower deposition rate for Cu
and Ti thin films (Bugaev et al., 1996)
a factor of 4 – 7 lower deposition rate for
reactive sputtering of TiO2 from a Ti
target (Davis et al., 2004)
a factor of 3 - 4 lower deposition rate for
reactive sputtering of AlOx from an Al
target (Sproul et al., 2004)
the reduction in deposition rate
decreases with decreased magnetic
confinement (weaker magnetic field)
(Bugaev et al., 1996)
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HiPIMS - Deposition rate

One explanation is that the sputtered material is ionized
close to the target and many of the metallic ions will be
attracted back to the target surface by the cathode potential
A reduction in the deposition rate would occur mainly for
metals with a low self-sputtering yield
Maybe this can be reduced by optimized magnetic
confinement
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HiPIMS - Applications

HiPIMS has already been
demonstrated on an industrial scale
(Ehiasarian et al., 2006)

Due to the absence of a secondary
discharge in the reactor an industrial
reactor can be upgraded to become
IPVD device by changing the power
supply
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Other IPVD magnetron sputtering techniques

Other IPVD methods include shaping
the cathode target in a particular way
referred to as hollow cathode
magnetron (HCM) discharge
(Klawuhn et al., 2000)

An intense glow discharge forms in the
cup-shaped cathode which confines
the discharge both physically and
electrostatically
The HCM is capable of operating at an
order of magnitude higher power
densities than a conventional planar
magnetron discharge and can be
operated at very low pressures
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Application - Trench filling

Ta thin films grown on Si substrates placed along a wall of
a 2 cm deep and 1 cm wide trench

conventional dc magnetron sputtering (dcMS)
high power impulse magnetron sputtering (HiPIMS)

Average power is the same 440 W
They were compared by scanning electron microscope
(SEM), transmission electron microscope (TEM), and
Atomic Force Microscope (AFM)
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Application - Trench filling

(From Alami et al. (2005))

dcMS grown films exhibit rough surface, pores between
grains and inclined columnar structure, leaning toward the
aperture
Ta films grown by HiPIMS have smooth surface, and dense
crystalline structure with grains perpendicular to the
substrate
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Other applications

The advantage of IPVD for film growth has been
demonstrated by several groups

ultra-thin carbon films grown by HiPIMS have significantly
higher densities (2.7 g/cm3), than films grown by a
conventional dcMS discharge (< 2.0 g/cm3) Furthermore,
the surface roughness is lower (DeKoven et al., 2003)

TiO2 thin films grown by reactive sputtering by HiPIMS have
higher index of refraction than grown by dcMS discharge -
maybe due to higher density (Davis et al., 2004)

TiN thin film show increased microhardness and Yong’s
modulus with increaed rf power in ICP-MS (Lim et al., 2000)

This illustrates how the bombarding ions transfer
momentum to the surface allowing the microstructure to be
modified
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Summary

The technology of ionized physical vapor deposition (IPVD)
has been reviewed

Addition of a secondary discharge to a magnetron
sputtering discharge

Ionization fraction is controlled by power to the secondary
discharge and discharge pressure

The high power impulse magnetron sputtering discharge
(HIPIMS)

Essentially the same sputtering apparatus except for the
power supply
Roughly 2 orders of magnitude higher plasma density is
achieved in the substrate vicinity than for a conventional dc
magnetron sputtering discharge
Ionization fraction is high, mainly due to the high electron
density
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Summary

We demonstrated the use of a high power pulsed
magnetron sputtering discharge

for trench filling
to grow denser and harder films
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