A particle-in-cell/Monte Carlo simulation of a capacitively coupled chlorine discharge

Shuo Huang1 and Jón Tómas Guðmundsson1,2

1University of Michigan - Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, China
2Science Institute, University of Iceland, Iceland
tumi@hi.is

66th Gaseous Electronics Conference
Princeton, New Jersey
October 3., 2013
Introduction

- Chlorine is an electronegative diatomic gas that is widely used in plasma etching of both semiconductors and metals, in particular poly-silicon gate and aluminum interconnects.
- Chlorine atoms are believed to be the primary reactant in plasma etching.
- The chlorine molecule has
 - a low dissociation energy (2.5 eV)
 - a near-zero threshold energy for dissociative attachment
- All electronic excitations of the molecule appear to be dissociative, and no metastable molecular states are of importance.
Outline

- The 1D particle-in-cell/Monte Carlo collision simulation
 - The chlorine discharge
- Comparison with measurements
- Capacitively Coupled Chlorine Discharge at 13.56 MHz – Voltage Source
- Capacitively Coupled Chlorine Discharge at 27.12 MHz – Current Source
- Capacitively Coupled Chlorine Discharge – dual frequency 27.12 MHz and 2 MHz – Current Source
- Summary
The 1D particle-in-cell/Monte Carlo collision simulation
The oopd1 1d-3v PIC/MCC code

- We use the oopd1 (objective oriented plasma device for one dimension) code to simulate the discharge.
- The oopd1 code was originally developed at the Plasma Theory and Simulation Group at UC Berkeley.
- It has 1 dimension in space and 3 velocity components for particles (1d-3v).
- The oopd1 code is supposed to replace the widely used xpdx1 series (xpdp1, xpdc1 and xpds1).
- It is developed to simulate various types of plasmas, including processing discharges, accelerators and beams.
 - Modular structure.
 - Includes relativistic kinematics.
 - Particles can have different weights.

We consider a discharge that consists of:

- electrons
- the ground state chlorine molecule \(\text{Cl}_2(X^1\Sigma^+_g, \nu = 0) \),
- the ground state chlorine atom \(\text{Cl}(3p^5 \, ^2P) \),
- the negative chlorine ion \(\text{Cl}^- \)
- the positive chlorine ions \(\text{Cl}^+ \) and \(\text{Cl}_2^+ \)
The chlorine discharge

- In the chlorine discharge, the number of Cl atoms is much larger than the number of charged species.
- Thus, we apply a global model\(^1\) beforehand to calculate the fraction of Cl atoms under certain control parameters including the discharge pressure, absorbed power and the gap length between two electrodes.
- The absorbed power found in the PIC/MCC simulation is used as an input parameter in the global model iteratively.
- Both Cl\(_2\) molecules and Cl atoms are treated as the initial background gas in the simulation.

The chlorine discharge

- The reaction set for the chlorine is comprehensive and includes 44 reactions

Comparison with experiments
Comparison with experiments

- Electron density versus discharge pressure (30 – 600 mTorr)
- Secondary electrons actually affect the electron density
- We allow the secondary electron emission coefficient, γ_{se}, to vary from 0.15 to 0.45 in order to fit the simulation to the experimental values

Ono et al., 1992, J. Vac. Sci. Technol. A, 10 1071
Comparison with experiments

- Impedance and phase angle versus discharge pressure
- Secondary electrons have little influence
- The agreement with the measured data is excellent with only small discrepancy above 600 mTorr in the impedance

Capacitively Coupled Chlorine Discharge at 13.56 MHz
Capacitively Coupled Chlorine Discharge at 13.56 MHz

- We apply a voltage source with a single frequency
 \[V(t) = V_{\text{rf}} \sin(2\pi ft) \]
- The electrodes are circular with a diameter of 14.36 cm
- The gap between the electrodes is 4.5 cm
- We set \(V_{\text{rf}} = 222 \) V and \(f = 13.56 \) MHz
- The neutrals (\(\text{Cl}_2 \) and Cl) are treated as background gas at \(T_g = 300 \) K with a Maxwellian distribution
- The dissociation fraction is found using a global model
- The explored pressure range is 5 – 100 mTorr
Capacitively Coupled Chlorine Discharge at 13.56 MHz

The diagrams show the time average density at different torr pressures: 5 mTorr, 10 mTorr, 50 mTorr, and 100 mTorr. The x-axis represents the position in meters, and the y-axis represents the time average density in m$^{-3}$. The graphs indicate the distribution of different species, such as Cl$^+$, Cl$_2^+$, and Cl$^-$.
At low pressures, the profile for Cl$_2^+$ ions is cosine-like or parabolic since Cl$_2^+$ ions are lost mainly due to diffusion to the walls.

As the pressure increases, the recombination between Cl$_2^+$ and Cl$^-$ ions becomes the major loss mechanism for Cl$_2^+$ ions.

Thus, the density profile for Cl$_2^+$ and Cl$^-$-ions becomes quite flat in the bulk region.
The density profile for Cl\(^+\)-ions is very different from that for Cl\(_2\)^+ -ions.

In the bulk region the density of Cl\(^+\)-ions is uniform at relatively low value.

In the sheath region the density of Cl\(^+\)-ions increases with increasing pressure – through non-resonant charge transfer.
At low pressures the power absorbed by the electrons is distributed in the bulk and sheath region through electron–neutral collisions and stochastic heating due to the oscillating sheath, respectively.

At high pressures the power absorbed by the electrons is mainly due to electron–neutral collisions in the bulk.
Capacitively Coupled Chlorine Discharge at 27.12 MHz – Current Source
Capacitively Coupled Chlorine Discharge at 27.12 MHz

We apply a current source with a single frequency

\[J(t) = J_{rf} \sin(2\pi ft) \]

- The electrodes are circular with a diameter of 10.2 cm
- The gap between the electrodes is 2.54 cm
- We set \(J_{rf} = 20 – 80 \text{ A/m}^2 \) and \(f = 27.12 \text{ MHz} \)
- The neutrals (\(\text{Cl}_2 \) and \(\text{Cl} \)) are treated as background gas at \(T_g = 300 \text{ K} \) with a Maxwellian distribution
- The dissociation fraction is found using a global model
- The pressure is 10 mTorr
Stochastic heating in the sheath becomes more prominent as the current increases.

The electron energy distribution function changes from Druyvesteyn to Maxwellian, and then to bi-Maxwellian as the current increases.
Capacitively Coupled Chlorine Discharge at 27.12 MHz

- Energy [eV]
 - IED of Cl$_2$ + [A.U.]
 - $J_{rf} = 20$ A/m2
 - $J_{rf} = 40$ A/m2
 - $J_{rf} = 60$ A/m2
 - $J_{rf} = 80$ A/m2

- Angle [degree]
 - IAD of Cl$_2$ + [A.U.]
 - $J_{rf} = 20$ A/m2
 - $J_{rf} = 40$ A/m2
 - $J_{rf} = 60$ A/m2
 - $J_{rf} = 80$ A/m2
Capacitively Coupled Chlorine Discharge – dual frequency 27.12 MHz and 2 MHz – Current Source
Capacitively Coupled Chlorine Discharge at 27.12 MHz + 2 MHz

- We apply a current source that consists of two frequency components
 \[J(t) = J_{hf} \sin(2\pi f_{hf} t) + J_{lf} \sin(2\pi f_{lf} t) \]

- The electrodes are circular with a diameter of 10.2 cm
- The gap between the electrodes is 2.54 cm
- We set \(J_{hf} = 40 \text{ A/m}^2 \) and \(f = 27.12 \text{ MHz} \)
- We set \(J_{lf} = 1 - 4 \text{ A/m}^2 \) and \(f = 2 \text{ MHz} \)
- The neutrals (Cl\(_2\) and Cl) are treated as background gas at \(T_g = 300 \text{ K} \) with a Maxwellian distribution
- The dissociation fraction is found using a global model
- The pressure is 10 mTorr
As the low-frequency current increases, the heating in the bulk region first decreases slightly and then increases dramatically.

The number of low-energy electrons first increases and then decreases, while the number of the high-energy electrons increases steadily with increasing low frequency current.
Capacitively Coupled Chlorine Discharge at 27.12 MHz + 2 MHz
Capacitively Coupled Chlorine Discharge at 27.12 MHz + 2 MHz

- The IED becomes wider and extends to the high-energy region with increasing low-frequency current
- The IAD is more concentrated in the small-angle region with increasing low-frequency current
Capacitively Coupled Chlorine Discharge at 27.12 MHz + 2 MHz

- The average sheath potential drop increases with increased low frequency current and thus the absorbed power while the flux of charged particles remains roughly constant.

- The flux of high energy (> 1 eV) neutrals and Cl\(^+\) increases with increased low frequency current.
We demonstrated particle-in-cell/Monte Carlo collision simulation of a capacitively coupled chlorine discharge. Both chlorine atoms and Cl$^+$-ions are considered in the reaction set. We explored voltage source driven discharge of single frequency and current source driven single and dual frequency discharges.
References

The slides can be downloaded at

http://langmuir.raunvis.hi.is/~tumi/plasma.html

