A global (volume averaged) model of a chlorine discharge: Dilution with argon and oxygen

Eyþór Gísli Þorsteinsson¹ and Jón Tómas Guðmundsson¹,²

¹Science Institute, University of Iceland, Iceland
²UM-SJTU Joint Institute, Shanghai Jiao Tong University, Shanghai, China

tumi@hi.is

International Workshop on Plasma Science and Applications,
Xiamen, China, October 25., 2010
Chlorine is an electronegative diatomic gas that is widely used in plasma etching of both semiconductors and metals, in particular poly-silicon gate and aluminum interconnects.

Chlorine atoms are believed to be the primary reactant in plasma etching.

The chlorine molecule has:
- a low dissociation energy (2.5 eV)
- a near-zero threshold energy for dissociative attachment

All electronic excitations of the molecule appear to be dissociative, and no metastable molecular states are of importance.
Outline

- The global (volume averaged) model
 - Model parameters
- Comparison with measurements
- Particle densities
- Sensitivity analysis
- Argon dilution
- Oxygen dilution
- Summary
The global (volume averaged) model
The global (volume averaged) model

A steady state global (volume averaged) model was developed for the chlorine discharge using a revised reaction set.

The following species are included:

- electrons
- the ground state chlorine molecule Cl$_2$(X$^1\Sigma_g^+$, $v = 0$),
- the vibrationally excited ground state chlorine molecules Cl$_2$(X$^1\Sigma_g^+$, $v = 1 - 3$)
- the ground state chlorine atom Cl(3p$^5\,^2P$)
- the negative chlorine ion Cl$^-$
- the positive chlorine ions Cl$^+$ and Cl$_2^+$

The content of the chamber is assumed to be nearly spatially uniform and the power is deposited uniformly into the plasma bulk.

The global (volume averaged) model

- The particle balance equation for a species X is given

$$\frac{dn^{(X)}}{dt} = 0 = \sum_i R_{\text{Generation},i} - \sum_i R_{\text{Loss},i}$$

where $R_{\text{Generation},i}$ and $R_{\text{Loss},i}$, respectively, are the reaction rates of the various generation and loss processes of the species X

- The power balance equation, which equates the absorbed power P_{abs} to power losses due to elastic and inelastic collisions and losses due to charged particle flow to the walls is given as

$$\frac{1}{V} \left[P_{\text{abs}} - eVn_e \sum_\alpha n^{(\alpha)} \varepsilon_\alpha \kappa_{iz}^{(\alpha)} - euB_0 n_i A_{\text{eff}} (\varepsilon_i + \varepsilon_e) \right] = 0$$
The global (volume averaged) model

For the edge-to-center positive ion density ratio we use

$$h_L \simeq \left[\left(\frac{0.86}{(3 + \eta L/2\lambda_i)^{1/2}} \frac{1}{1 + \alpha_0} \right)^2 + h_c^2 \right]^{1/2}$$

$$h_R \simeq \left[\left(\frac{0.8}{(4 + \eta R/\lambda_i)^{1/2}} \frac{1}{1 + \alpha_0} \right)^2 + h_c^2 \right]^{1/2}$$

where $$\alpha_0 \approx (3/2)\alpha$$ is the central electronegativity, $$\eta = 2T_+/(T_+ + T_-)$$ and

$$h_c \simeq \left[\gamma_-^{1/2} + \gamma_+^{1/2} \left[n_*^{1/2} n_+/n_-^{3/2} \right] \right]^{-1} \quad \text{and} \quad n_* = \frac{15}{56} \frac{\eta^2}{k_{\text{rec}}\lambda_i} v_i$$

is based on a one-region flat topped electronegative profile

$$\gamma_- = T_e/T_- \quad \text{and} \quad \gamma_+ = T_e/T_+$$

The global (volume averaged) model

The diffusional losses of the neutral chlorine atoms to the reactor walls are given by

\[k_{\text{Cl, wall}} = \left[\frac{\Lambda_{\text{Cl}}^2}{D_{\text{Cl}}} + \frac{2V(2 - \gamma_{\text{rec}})}{Av_{\text{Cl}}\gamma_{\text{rec}}} \right]^{-1} \text{ s}^{-1} \]

- \(D_{\text{Cl}} \) is the diffusion coefficient for neutral chlorine atoms
- \(v_{\text{Cl}} = \left(\frac{8eT_g}{\pi m_{\text{Cl}}} \right)^{1/2} \) is the mean Cl velocity
- \(\gamma_{\text{rec}} \) is the wall recombination coefficient for neutral chlorine atoms on the wall surface
- \(\Lambda_{\text{Cl}} \) is the effective diffusion length of neutral chlorine atoms

\[\Lambda_{\text{Cl}} = \left[\left(\frac{\pi}{L} \right)^2 + \left(\frac{2.405}{R} \right)^2 \right]^{-1/2} \]

The wall recombination coefficient \(\gamma_{\text{rec}} \) is one of the most important parameters in chlorine discharge modelling.
Model parameters
Surface recombination

- The wall recombination probability, γ_{rec}, is a very important quantity in all low pressure molecular discharges.
- We use the wall recombination coefficient measured by Stafford et al. (2009) for stainless steel.

A fit to the measured data is for anodized aluminum

$$\log_{10}(\gamma_{\text{rec}}) = -0.82 - 1.59 \times \exp(-1.81 \times \frac{[\text{Cl}]}{[\text{Cl}_2]})$$

and for stainless steel

$$\log_{10}(\gamma_{\text{rec}}) = -1.22 - 1.34 \times \exp(-1.48 \times \frac{[\text{Cl}]}{[\text{Cl}_2]})$$
Donnelly and Malyshev (2000) found that the neutral chlorine gas temperature was between 300 and 1250 K, increasing with power and pressure up to 1000 W and 20 mTorr.

A fit through the measured data gives

\[T_g(P_{\text{abs}}, p) = 300 + s(p) \frac{\log_{10}(P_{\text{abs}}/40)}{\log_{10}(40)} \]

where

\[s(p) = 1250 \left(1 - e^{-0.091 \times p}\right) + 400 e^{-0.337 \times p} \]
Comparison with experiments
Comparison with experiments

- Densities of neutral Cl atoms and electrons versus power
- The agreement with the measured electron density is excellent
- The calculated density of atomic chlorine is in a very good agreement with the measured data at both 1 and 10 mTorr

Malyshev and Donnelly, J. Appl. Phys. 90 1130 (2001)

- inductively coupled cylindrical stainless steel chamber
- \(L = 20 \text{ cm and } R = 18.5 \text{ cm} \)
Particle densities
Particle densities

- Atomic chlorine Cl is the dominant particle at low pressure, but the chlorine molecule Cl\(_2\) has a larger density above 20 mTorr.
- The density of the atomic ion Cl\(^+\) is always much smaller than the Cl\(_2\)\(^+\) density, decreasing with pressure.
- A cylindrical stainless steel chamber radius \(R = 18.5\) cm, length \(L = 20\) cm.

\[P_{\text{abs}} = 323\ \text{W} \]
Sensitivity analysis
Sensitivity analysis – EEDF

- The discharge pressure was 10 mTorr and the absorbed power 323 W
- We allow the electron energy distribution function to vary according to the general distribution function

\[f(\varepsilon) = c_1 \varepsilon^{1/2} \exp(-c_2 \varepsilon^x) \]

where the coefficients \(c_1 \) and \(c_2 \) depend on the energy \(\varepsilon \) and the distribution parameter \(x \)

<table>
<thead>
<tr>
<th>(x): 1 – 2</th>
<th>([\text{Cl}]/n_g)</th>
<th>([\text{Cl}^+]/n_+)</th>
<th>(\alpha)</th>
<th>(T_e)</th>
<th>(n_e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\downarrow) 1.01</td>
<td>(\downarrow) 1.40</td>
<td>(\uparrow) 1.34</td>
<td>(\uparrow) 1.43</td>
<td>(\downarrow) 1.65</td>
<td></td>
</tr>
</tbody>
</table>

Gudmundsson, Plasma Sources Sci. Technol., 10 76 (2001)
Sensitivity analysis – γ_{rec}

<table>
<thead>
<tr>
<th>γ_{rec}</th>
<th>$[\text{Cl}]/n_g$</th>
<th>$[\text{Cl}^+]/n_+$</th>
<th>α</th>
<th>T_e</th>
<th>n_e</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10^{-4} - 1$</td>
<td>↓ 5.75</td>
<td>↓ 34.6</td>
<td>↑ 4.25</td>
<td>↑ 1.13</td>
<td>↓ 1.59</td>
</tr>
</tbody>
</table>

- The wall recombination coefficient γ_{rec} determines the rate coefficient for recombination of neutrals on the wall.
- However, varying γ_{rec} has a much larger effect on the atomic ion fraction than on the dissociation fraction.
Argon dilution
Argon dilution – particle densities

- The discharge is highly dissociated with Cl atoms being the dominant neutral until the argon content is 60%.
- The Cl^+ density increases until the argon dilution is 68%.
- This is likely a result of the increased electron temperature.
- A cylindrical stainless steel chamber $L = 10$ cm and $R = 10$ cm
 Pressure is $p = 10$ mTorr
 Power $P_{\text{abs}} = 500$ W

$Q_{\text{Cl}_2} + Q_{\text{Ar}} = 100$ sccm
Particle densities

- The electron temperature increases with argon content at low and intermediate pressures.
- The chlorine dissociation increases with argon content.
- The chlorine dissociation fraction decreases with increased pressure above 10 mTorr at low and moderate argon contents.
Particle densities

- The pressure dependence of the fraction of Cl+ positive ions can be modified by argon dilution.

- It peaks at low pressure when the argon content is low or moderate, but at high pressure in an argon dominated discharge.

- The peak value increases slightly with increased argon content, even when the argon content has reached 90%.

Oxygen dilution
Particle densities

- The Cl^+ density decreases with increased oxygen dilution.
- The chlorine-oxide molecule ClO and its ion ClO^+ peak when Cl_2 and O_2 flowrates are roughly equal.
- The $\text{O}_2(\alpha^1\Delta_g)$ density is about 9 – 10 % of the total O_2 density.
- The electron density increases about 30 % between pure chlorine and pure oxygen discharge.

![Graph showing particle densities as a function of $Q_{\text{O}_2}/(Q_{\text{O}_2} + Q_{\text{Cl}_2})$ [\%]].

A cylindrical stainless steel chamber
$L = 10 \text{ cm}$ and $R = 10 \text{ cm}$
$p = 10 \text{ mTorr}$ and $P_{\text{abs}} = 500 \text{ W}$
- The total rate for creation and loss of ClO molecules is at maximum when the oxygen content is 65%.
- Wall recombination of Cl molecules, is the dominating pathway for creation of ClO molecules.
- The bulk processes and recombination of ClO$^+$ ions at the wall account for roughly 33–43% of the total rate for ClO creation, combined.
Summary

- A global model of Cl₂, Cl₂/Ar and Cl₂/O₂ discharges has been developed.
- The chlorine discharge remains highly dissociated in all conditions, being over 20% at the lowest power and highest pressure explored.
- Cl⁻ ions are essentially entirely produced in dissociative attachment of electrons to Cl₂ and lost to mutual neutralization with Cl⁺ and Cl₂⁺.
- The effect of vibrationally excited chlorine molecules Cl₂(ν > 0) is not great, at most increasing the Cl⁻ production by about 14%.
- The Cl⁺ density increases with increased argon dilution but decreases with increased oxygen dilution.
- The ClO molecule is mainly created by recombination at the discharge wall.

