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Introduction

o Magnetron sputtering discharges are widely used for thin
film deposition — spanning various industries

o In the planar circular configuration it is simply a diode
discharge with two concentric stationary cylindrical
magnets placed directly behind the cathode target

o Applications include deposition of

7 -~
o thin films in integrated circuits cange ‘@ jg
o magnetic material H‘ ‘ﬂl
o hard, protective, and wear 1
resistant coatings T
o optical coatings Gudmundsson and Lundin (2020) in High Power Iaa

o decorative coatings
o low friction films

Magnetron Sputtering Discharge, Elsevier, 20
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Introduction
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From Gudmundsson (2008) J. Phys.: Conf. Ser. 100 082002
o A typical dc planar magnetron discharge operates at a
pressure of 1 — 10 mTorr with a magnetic field strength of
10 — 50 mT and at cathode potentials 300 — 700 V
o Electron density in the substrate vicinity is in the range
1015 _ 1016 m—3
o low fraction of the sputtered material is ionized (~ 1 %)
o the majority of ions are the ions of the inert gas

o additional ionization by a secondary discharge (rf or
microwave)

Gudmundsson (2020) PSST 29(11) 113001
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Introduction

o High ionization of sputtered material
requires very high density plasma

o In a conventional dc magnetron
sputtering discharge the power
density (plasma density) is limited by
the thermal load on the target

o High power pulsed magnetron
sputtering (HPPMS)
o In a HiPIMS discharge a high power
pulse is supplied for a short period
o low frequency
o low duty cycle
o low average power

100
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01+

Peak power density (kW/cm?)

Gudmundsson et al. (2012) JVSTA 30 030801
Q Power density limits

b = 0.05 kW/cm? dcMS limit

b = 0.5 kW/cm? HiPIMS limit
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Introduction

o Temporal and spatial variation of the
electron density in HiIPIMS discharge

o Ardischarge at 20 mTorr, Ti target,
pulse length 100 us

o The electron density in the substrate
vicinity is of the order of 10'® — 101°

m_3 Bohlmarkﬁt al. (2005), IEEE Trans. Plasma Sci. 33 346
HiPIMS
o The electron density versus the _: s, o ]
discharge current density measured P SER. oot ]
in dc diode and magnetron sputtering o § ]
discharges r e |
T e

From Gudmundsson (2020) PSST 29(11) 11
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Thin film deposition — Fraction of ionization
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From Samuelsson et al. (2010) SCT 202 591

o In HIPIMS deposition, the high fraction of
ionization of the sputtered species has been
shown to lead to

o growth of smooth and dense films

o enable control over their phase composition
and microstructure

o enhance mechanical, electrical, and optical
properties

o improve film adhesion

o enable deposition of uniform films on
complex-shaped substrates

o The mass density is always higher and the
surfaces are significantly smoother when
depositing with HiPIMS compared to d
at the same average power
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Thin film deposition — Film Resistivity

o TiN as diffusion barriers for copper T — S
and aluminum interconnects i P

o HiPIMS deposited films have
significantly lower resistivity than
dcMS deposited films on SiO, at all
growth temperatures due to reduced
grain boundary scattering

o Thus, ultrathin continuous TiN films
with superior electrical
characteristics and high resistance
towards oxidation can be obtained
with HiPIMS at reduced
temperatures

2
“
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From Magnus et al. (2012) IEEE EDL 33 1045
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Thin film deposition — Molecular Dynamics simulation

o The effect of ionization fraction on the
epitaxial growth of Cu film on Cu(111)
substrate explored using Molecular
Dynamics simulation

o Three deposition methods

o thermal evaporation, fully neutral
o dcMS, 50 % ionized
o HiPIMS, 100 % ionized

o Higher ionization fraction of the deposition
flux leads to smoother surfaces by two
major mechanisms

o decreasing clustering in the vapor phase
o bicollision of high energy ions at the film
surface that prevents island growth to

become dominant

After Kateb et al. (2019) JVSTA 37 031306
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Thin film deposition — Deposition rate

o There is a drawback o0

o The deposition rate is lower for HiPIMS i
when compared to dcMS operated at the £
same average power

o The HiPIMS deposition rates are typically o
in the range of 30 — 85% of the dcMS
rates depending on target material

o Many of the ions of the target material are
attracted back to the target surface by the
cathode potential

8121 SINOQ / 318l SINIIH

From Samuelsson et al. (2010) SCT 202 591
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Introduction — Fraction of ionization

o Quantification and control of the fraction of ionization of the
sputtered species are crucial in magnetron sputtering

o We distinguish between three approaches to describe the
degree (or fraction) of ionization

o the ionized flux fraction

rA
Fux = :
T AT,
o the ionized density fraction
n.
Fdensity = anlnn

o the fraction o, of the sputtered metal atoms that become
ionized in the plasma (probability of ionization)

Butler et al. (2018) PSST 27 105005
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Influence of magnetic field
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Gudmundsson and Lundin (2020) in High Power Impulse Figure provided by Zanaska and Mainwaring (2020)

T vees

Magnetron Sputtering Discharge, Elsevier, 2020
o The magnetron sputtering discharge is based on magnetic
confinement of the electrons
o To describe the magnetic field we use
o The magnetic field strength just above the race track
denoted by B, = |B|
o The magnetic null point, which is the distance from the
target surface to the point where the magnetic flux density
changes its direction and is denoted by z,.;

Gudmundsson (2020) PSST 29(11) 113001
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Influence of magnetic field — Deposition rate

o The Ti deposition rate and the
ionized flux fraction are measured

using a gridless ion meter (m-QCM) ‘S : EAE3)

Kubart et al. (2014) SCT 238 152 " "
o The ion meter is mounted on a probe i I
holder which can be moved around '_ - ’
within the chamber S LE SE S [
o The Ar working gas pressure was set Vacuum iy
to 1 Pa

. From Hajihoseini et al. (2019) Plasma 2 201
o In all cases the pulse width was

100 us at an average power of 300 W
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Influence of magnetic field — Deposition rate

o The Ti deposition rate recorded at

substrate position using a gridless
ion meter (M-QCM) o} S et vt
+10% with decreasing |B| 3=
(but no obvious trend) E
o HiPIMS fixed voltage
+110% with decreasing |B| “
o HiPIMS fixed peak current o om e o s "o ooen
+40% with decreasing |B| )
o In HiPIMS Operation the depOSition From Hajihoseini et al. (2019) Plasma 2 201

rate increases with decreasing |B|,
ordered from high |B| at the left to
low |B| on the right
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Influence of magnetic field — Ionized flux fraction

o lonized flux fraction recorded

o
Always around 0 %
(Kubart et al., 2014)

o HiPIMS fixed voltage
—75% with decreasing |B|

o HiPIMS fixed peak current
+50% with decreasing |B|

o The ionized flux fraction decreases
with decreasing |B| when the HiPIMS
discharge is operated in fixed voltage
mode but increases in fixed peak
current mode

o Opposing trends

COEO  COE5 COEf0 CSEO  CSES CIOEO CIOE(0
Magnetic configuration

From Hajihoseini et al. (2019) Plasma 2 201
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Influence of magnetic field — Ionized flux fraction

o The total radial material flux across
the side surface of a cylinder divided
by the total axial flux of the film
forming material across the top
circular surface at z =70 mm

o The total radial flux of the film
forming material is often greater in
dcMS compared to HiPIMS

o Therefore the reduction of the (axial)
deposition rate in HiPIMS compared
to dcMS is not due to increased
radial transport in HiIiPIMS

g [JdeMs
g I HiPIMS

COE0 COE5S COEI0 C5E0 CSE5 CI0E0 CI0E10
Magnetic configuration

From Hajihoseini et al. (2020) JVSTA 38 033009
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Influence of magnetic field — Ionized flux fraction

o The ratio of sideways ion deposition
rate at (r, z) = (50, 35) mm and the
axial rate at (r, z) = (0,70) mm for
the seven magnet configurations

o The magnet configurations on the
x-axis are ordered from high |B| at
the left to low |B| on the right

o The radial ion deposition rate is at
least as large as the axial ion
deposition rate, and often around two
times higher

N 2
g5
Zo1
= o0s II I I I
&
0

. -llll;.
£ 3 [ Fixed cu

COED (ﬂF (IlFID CSE0 CSES CI0EO CI0E10
etic configuratic

From Hajihoseini et al. (2020) JVSTA 38 033009




Internal parameters and optimization
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Influence of magnetic field — o and [,

o Low deposition rate is the main drawback of this sputter
technology and hampers its use for industrial applications

o The main reason for the low deposition rate of the HiPIMS
discharge is suggested to be due to the back-attraction of
the ions of the sputtered species to the cathode target

o This process is described by two parameters

o oy — ionization probability
o [, — back-attraction probability

o Increased deposition rate in HiPIMS often comes at the
cost of a lower ionized flux fraction of the sputtered
material
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Influence of magnetic field — o and [,

o We can relate the measured quantities deposition rate
Fpr sput @and the ionized flux fraction F gux

r
FDR,sput = % = (1 - atﬁt)
0

MRjons  Toa(1 —53)  o(1—5)

rDR,sput B I_0(1 - Oétﬁt) B (1 - Oétﬁt)
to the internal parameters back attraction probability 5,

Fti,ﬂux =

_ 11— FDR,sput
1— FDR,sput(‘I - Fti,ﬂux)

and ionization probability o

B

o =1- FDR,sput(‘I - Fti,ﬁux)

Hajihoseini-et al. (2019) Plasma 2 201
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Internal parmeters — o and (3 refined

o The particle fluxes out of the diffusion

region and the fluxes onto the ion meter FOR [OR gmroR  gmrow
are related by the transport parameters " ion meter
&m and &; for neutrals and ions, and these z g I
are in general not equal: etrae - Z///If/% oo "
o A larger scattering cross-section for ions 4 - //////////// i
target = n

compared to neutrals
o lons are influenced by the electric fields

inthe IR Rudolph et al. (2020) JAP
o Plasma instabilities such as spokes
further broaden the scatter cone of
target ions
o The resulting angular distributions of
neutrals and ions are shown
schematically

submitted November 2020
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Internal parmeters — o and [3; refined

o The ionization probability of the Rt
sputtered species is then E .
. IM g 06
=1~ Fsput—>IM(1 Ftl flux g.
bt

and the ion back-attraction probability R

«, analytical model

® L.

Fsput—)IMFl flux (1 - %) B FSI[I)\gt—ﬂM + 1
1- Fput%IM(.I Ftl ﬂux)

which is a more general form of the ,
equations for o and f3; than used earlier B AT
and assumed &, = &

o We flnd §t /ét ~ 1 9 Rudolph et al. (2020) JAP submitted Nove ~
n 1~ 1.

Be=

B, refined analytical model
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Internal parmeters — o and (3 refined

o The results of the refined analytical 0s
model have also been validated using
the IRM, a global volume averaged
plasma-chemistry model based on
particle and power balance ,

Huo et al. (2017) JPD 50 354003 % iRm

o The IRM is fitted according to a
well-described procedure using the
measured ionized flux fraction and the
measured discharge current and voltage P
waveforms Y S —

o The IRM volume is assumed to be
defined by 1 = 11 mm, r, = 39 mm,
zy =2mmand zo = 25 mm

a, refined analytical model

= fixed current |
o fixed voltage |

. refined analytical model

Rudolph et al. (2020) JAP submitted Nove
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Influence of magnetic field — Optimization

o There are two measures of how good
a HiPIMS discharge is:

o the fraction Fpg s Of all the
sputtered material that reaches the
diffusion region (DR)

o the fraction F gy« Of ionized species
in that flux

o There is a trade off between the
goals of higher Fpg spuc and higher
Fti,ﬂux

o The figure shows Fpg spur aNd Fi flux
as functions of o, at assumed fixed
value of 5, = 0.87

dcMS HiPIMS
MPPMS
Jp= 0.01 0.15 0.5/ 1.0 Alem?
1.0 } b 11.0
08 [Hos
2 o0s 06
£ :
w uw
04 Y, 0.4
'
0.2 < 02
0.0 0.0
0.0 0.2 04 0.6 0.8 1.0

From Brenning et al. (2020) JVSTA 38
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Influence of magnetic field — Optimization

o For a particular application an ionized flux
fraction of 30 % is suitable but

08< i < 085

o Following the green dotted line from the 5 ool / v
value Fi qux = 0.30 to the red dashed B E
curve gives o, = 0.9 (red square) m

o The black dashed line then shows a; only 1.
15 % of the total sputtered flux enters the oy
diffusion region (Fpr sput = 0.15).

o Solid lines show that reducing the From Brenning et al. (2020) JVSTA 38 033008

back-attraction to 5; = 0.8 where a; = 0.69
is sufficient to maintain F; fux = 0.30 (red
circle) and Fpg sput = 0.45 or a factor of
three increase in the deposition rate
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Influence of magnetic field — o and [,

o When operating in the fixed voltage mode e
(red) the ionization probability o SR
increases with increased magnetic field s *
strength — which is essentially the o
discharge current

o When operating in the fixed peak current
mode (black) the ionization probability o, .55t (o)
is roughly constant independent of the
magnetic field strength .o

o 4 can be varied intherange 0 < oy < 1
by the discharge current amplitude Jp

o f, is variable within a much smaller
achievable range and depends heavily on
the magnetic field strength

L s L
100 150 200 250
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Influence of magnetic field — o and [,

o The figure shows g as a function of
the magnetic field strength

(measured 11 mm above the et “"”I
racetrack center) O e -
o There is a clear trend that §, is R
lowered when the magnetic field o.o
strength is reduced . . .
By [mT]

o Using the line fit, we find that 5, =
0.96 for the highest magnetic field
Strength and /Bt — 093 fOI’ the |OWGSt From Brenning et al. (2020) JVSTA 38 033008
magnetic field strength

o Our proposed figure of merit (1 — )
changes by a factor of
(1-0.93)/(1—-0.96)=1.8
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Influence of magnetic field — o and [,

o The internal discharge

0.90

parameters from the IRM
H H H T 0751 21.3mT __ p
o The ionization probability % R
versus the discharge current £ os0
° The ion escape fraCtiOn 0.45 e—1AmT . cons:an:culrlrent
. |+ _constant voltage|
(1 — B3, versus the magnetic e
field strength I es ()
0.20
From Rudolph et al. (2021a) manuscript in preperation © e mani
E 0.16
5
%0,12
0,081OC1~OE“D C10E0 C§E§ C§Eol . c&n;s ACOAED

15 20 25
magnetic field strength B, (mT)
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Influence of magnetic field — Pulse length

o For the same average power, shorter

pulse lengths give higher deposition rate ~ o——
than with longer pulse lengths HEA 055
o The same average power can simply be o . 7 m
achieved by increasing the frequency S L \
o Shortening the pulses does not affect 0 D
the ionized flux fraction, which remains o .,
essentially constant o @ W0 e

pulse length [us]

o with shorter pulses, the afterglow
contributes increasingly more to the
total deposition rate

o the ionized flux fraction from the
afterglow is typically higher compared
to that during the pulse due to absent
back-attracting electric field

From Rudolph et al. (2020) PSST 29 05LT01
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Influence of magnetic field — Pulse length

o For the same average power, shorter

pulse lengths give higher deposition rate ~ o——
than with longer pulse lengths HEA 055
o The same average power can simply be o . 7 m
achieved by increasing the frequency S L \
o Shortening the pulses does not affect 0 D
the ionized flux fraction, which remains o .,
essentially constant o @ W0 e

pulse length [us]

o with shorter pulses, the afterglow
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total deposition rate

o the ionized flux fraction from the
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to that during the pulse due to absent
back-attracting electric field

From Rudolph et al. (2020) PSST 29 05LT01
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Influence of magnetic field — Pulse length

By switching-off the cathode potential
during the afterglow decreases the
effective 5,

B decreases with decreasing pulse length
The relative contribution of the afterglow
ions to the flux toward the DR increases
steadily for shorter pulses

The ionization probability «, also
decreases with a shorter pulse length
The useful fraction of the sputtered
species

08

07

0.9

08

0.6

05

DR

Mo = (1 - Oétﬁt)

Fi DR,sput —

(X

= 41A
A—T76 A

60 80
pulse length [ps]

100

w
(b)

accelerated drop in ionization
probabilty due to lower peak current

40

60 80 100

pulse length [us]

Frem Brenning et at. (2020} JVSTA=38 033008
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Influence of magnetic field — Pulse length

o HiPIMS can be optimized by selecting

o pulse power
o pu|se |ength PROCESS |DISCHARGE FLUX
. parameters | parameters | parameters
o working gas pressure
o magnetic field strength

o The HiPIMS compromise — a fully
ionized material flux is not required to
achieve significant improvement of the
thin film properties

o A sufficiently high peak discharge
current is required to reach the desired
ionized flux fraction

o Further increase would lead to
unnecessarily low deposition rates

From Brenning et al. (2020) JVSTA 38
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Mixed high power and low power pulsing

o The HiPIMS discharge can also be
optimized by mixing two different power ‘
levels in the pulse pattern it

o Standard HiPIMS pulses create the '
ions of the film-forming material <l

o An off-time follows, during which no A=
voltage (or a reversed voltage) to let
ions escape towards the substrate T s

o Then long second pulse, in the dc :
magnetron sputtering range, is applied,
to create neutrals of the film-forming
material

o The optimum power split is decided by
the lowest ionized flux fraction that gives
the desired film properties for a specific
application

|

Brenning et al. (2020) PSST

submitted September 2020
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Electron energy distribution function

)
@ AN IRM, cold electron (c)
R omex \ e

EEPF (e m™®)
EEPF (e m?)
EEPF (eV? m?)

|

108 \
0 100 200 300 400 500 o % 90 120 a0 420 440 460 480
electron energy (eV) electron energy (eV) electron energy (eV)

o The electron energy probability function (EEPF) at different
times in the discharge pulse (pulse initiation (5 us), current
rise (20 us), and plateau region (80 us)) for a discharge
with a 4 inch titanium target and operated with a peak
discharge current of Ip peax = 41 A

o A very good agreement between the bi-Maxwellian EEDF
assumed by the IRM and the EEDF that is calculated
self-consistently using the OBELIX model - a Boltzmann

solver From Rudolph et al. (2021b)-manuscript in preperation
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Summary

o For HiPIMS in the fixed voltage mode: A trade-off between
the deposition rate (increases by more than a factor of two)
and the ionized flux fraction (decreases by a factor 4 to 5)
with decreasing |B|

o For HIiPIMS in the fixed peak current mode: Decreasing |B|
improves both the deposition rate (by 40%) and the ionized
flux fraction (by 50%)

o There is an inescapable conflict between the goals of
higher deposition rate and higher fraction of ionized
species in the sputtered material flux

o The HiPIMS discharge can be optimized by adjusting the
pulse power, pulse length, working gas pressure and the
magnetic field strength
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