

Ab-initio calculation of state-resolved cross sections and rate coefficients for electron-oxygen scattering

V. Laporta

Istituto di Nanotecnologia, CNR, Bari (Italy)

Workshop on Oxygen Plasma Kinetics September 19 - 20, 2016, Reykjavik, Iceland

Plan of the talk:

- Short introduction to the theoretical formalism for electron-molecule resonant scattering;
- State-resolved cross sections database for electron-oxygen scattering
 - *Ab-initio* electron-O₂(X,*v*) cross sections;
 - Cross sections for ${}^{1}\Delta$, ${}^{1}\Sigma$ excited states of oxygen;
- Applications
 - Electron-vibration relaxation in oxygen plasmas;
 - Non-equilibrium model for inductively coupled plasmas discharges;

Some theoretical details

Let's consider electron-molecule scattering with the presence of two (or more) interacting resonances:

$$e^{-} + AB(v) \rightarrow AB_{1}^{-}, AB_{2}^{-} \rightarrow e^{-} + AB^{*}(w) \qquad (VE)$$

$$\rightarrow A^{-} + B \qquad (DA)$$

$$\rightarrow e^{-} + A + B \qquad (DE)$$

$$e^{-} + AB^{+}(v) \rightarrow AB_{1}, AB_{2} \rightarrow A + B \qquad (DR)$$

The process can be described by two (or more) discrete electronic states, $|d_1\rangle$ and $|d_2\rangle$, embedded-in and interacting-with a single electronic continuum $|\vec{k}\rangle$

The theory is developed in the *projector-operators* formalism within Hilbert space:

$$P = \int d\vec{k} |\vec{k}\rangle \langle \vec{k} |, \qquad Q = |d_1\rangle \langle d_1| + |d_2\rangle \langle d_2|$$
$$P + Q = 1, \qquad P^2 = P, \qquad Q^2 = Q, \qquad PQ = QP = 0$$

The electron-molecule effective Hamiltonian $H = H_0 + U + V$ can be written as:

 $H_{0} = |d_{1}\rangle(T_{N} + V_{0} + \epsilon_{1})\langle d_{1}| + |d_{2}\rangle(T_{N} + V_{0} + \epsilon_{2})\langle d_{2}| + \int d\vec{k} |\vec{k}\rangle(T_{N} + V_{0} + \epsilon_{\vec{k}})\langle \vec{k}|$

 $U = |d_1\rangle U_{12} \langle d_2| + \text{h.c.}$

$$V = \int d\vec{k} |d_1\rangle V_{1k} \langle \vec{k} | + |d_2\rangle V_{2k} \langle \vec{k} | + \text{h.c.}$$

- V_0 is the neutral molecule potential with eigenvalues equation:

 $(T_N + V_0) | v \rangle = \epsilon_v | v \rangle$

- $\epsilon_{1,2}$ are the resonance positions respect to V_0
- U describes the coupling between the discrete states
- V couples the discrete states with the continuum states

Schrödinger equation for electron-molecule scattering. Ψ is the complete wave function of the system with total energy $E = \epsilon_{\vec{k}} + \epsilon_{\nu}$:

$$(H-E)|\Psi\rangle=0$$

Splitting $|\Psi\rangle = P|\Psi\rangle + Q|\Psi\rangle$ into P e Q Hilbert subspace and projecting the Schrödinger equation, it obtains <u>Lippmann-Swinger</u> like equations for open-channel and closed-channel:

 $P(H_0 + U - E)P|\Psi\rangle = -PVQ|\Psi\rangle$ $Q(H_0 + U - E)Q|\Psi\rangle = -QVP|\Psi\rangle$

Treating V as a perturbation the open-channel solution can be written as:

$$P|\Psi\rangle = P|\epsilon_{\vec{k}}\rangle|\nu\rangle + \frac{1}{P(E - H_0 - U)P}PVQ|\Psi\rangle$$

The homogeneous solution represents asymptotically a
free electron $|\epsilon_{\vec{k}}\rangle$ and a target molecule in vibrational level $|\nu\rangle$

By putting the open-channel solution into closed-channel equation, after some manipulations, one has the final vector equation for the two resonant wave functions $\vec{\xi}(R) = (\xi_1, \xi_2)$:

$$\left(\widehat{\mathcal{H}} - E\right)\vec{\xi}(R) + \int dR' \ \widehat{K}(R, R', E)\vec{\xi}(R') = -\vec{V}_k \ \chi_v(R)$$

1 17

×

where $\vec{V}_k = (V_{1k}, V_{2k})$ are the coupling potentials and

$$\begin{aligned} \widehat{\mathcal{H}} &= \begin{pmatrix} T_N + V_1 & U_{12} \\ U_{21} & T_N + V_2 \end{pmatrix} \\ \widehat{K}(R, R', E) &= \sum_{\nu} \chi_{\nu}^* \left(R \right) \chi_{\nu}(R') \left[\widehat{\Delta}(R, R', E - \epsilon_{\nu}) - \frac{i}{2} \widehat{\Gamma}(R, R', E - \epsilon_{\nu}) \right] \\ \Gamma_{ij}(R, R', E - \epsilon_{\nu}) &= 2\pi \int d\epsilon' \ V_{ik} \ \delta(E - \epsilon') \ V^*_{jk} \qquad i, j = 1, 2 \\ \Delta_{ij}(R, R', E - \epsilon_{\nu}) &= \frac{1}{2\pi} P \int d\epsilon' \ \frac{\Gamma_{ij}(R, R', \epsilon')}{E - \epsilon_{\nu} - \epsilon'} \qquad i, j = 1, 2 \end{aligned}$$

The nuclear dynamics, in the <u>full theory</u>, is governed by *complex*, *non-local* and *energy-dependent* operators.

The <u>local approximation</u> (the so-called 'boomerang model') of the full theory consists to make the following two *ansatz* in the kernel \widehat{K} :

(spacing of the vibrational levels)

 $|\mathbf{f}|v_n - v_m| \ll \epsilon_{\vec{k}} \quad \forall n, m \quad \Longrightarrow \quad E - v_n = \epsilon_{\vec{k}} + v_i - v_n \approx \epsilon_{\vec{k}}$

(resonance positions)

$$\epsilon_{\vec{k}} \simeq \epsilon_1(R) = V_1(R) - V^0(R)$$

$$\epsilon_{\vec{k}} \simeq \epsilon_2(R) = V_2(R) - V^0(R)$$

With these replacements the kernel \hat{K} become *local* (=dependent on just one geometry) and *energy-independent*.

$$\begin{bmatrix} \begin{pmatrix} T_N + V_1 & U_{12} \\ U_{21} & T_N + V_2 \end{pmatrix} - \frac{i}{2}\widehat{\Gamma}(R) - E\widehat{\mathbf{1}} \end{bmatrix} \vec{\xi}(R) = -\vec{V}_k \,\chi_v(R)$$

The final resonant vibrational-excitation cross section for transition $v_i \rightarrow v_f$ and for electron energy ϵ is given by:

$$\sigma_{i,f}(\epsilon) = \frac{2s_r + 1}{2(2s+1)} \frac{g_r}{g} \frac{64\pi^5 m^2}{\hbar^4} \frac{k_f}{k_i} |T_{11} + T_{22} + T_{12} + T_{21}|^2$$

where the T matrix elements are given by

$$T_{pq} = \left\langle \chi_f \left| V_{pk_f} \right| \xi_q \right\rangle \qquad p, q = 1, 2$$

For a two <u>non-interacting</u> resonances the cross section reduces to:

$$\sigma_{i,f}(\epsilon) = \frac{2s_r + 1}{2(2s+1)} \frac{g_r}{g} \frac{64\pi^5 m^2}{\hbar^4} \frac{k_f}{k_i} (|T_{11}|^2 + |T_{22}|^2)$$

The corresponding rate coefficient, assuming for electrons a Maxwell distribution at temperature *kT*, is given by:

$$K_{i,f}(T) = \frac{2}{\sqrt{\pi}} (kT)^{-1.5} \int d\epsilon \ \epsilon \ \sigma_{i,f}(\epsilon) \ e^{-\epsilon/kT}$$

internuclear distance

 e^- + AB(v) \rightarrow AB $^ \rightarrow$ AB(v') + e^-

Electron energy (eV)

State-resolved cross sections database for electron-oxygen scattering

electron- $O_2(X, V)$ resonant scattering

In order to describe the low-energy electron- $O_2(X^3\Sigma_g^-)$ resonant scattering it needs to include four resonant states, ${}^{2}\Pi_{g}$, ${}^{2}\Pi_{u}$, ${}^{4}\Sigma_{u}^-$, ${}^{2}\Sigma_{u}^-$ of O_2^- .

Potential energy curves and resonance widths obtained from MOLPRO and R-matrix within aug-cc-pvQZ basis-set and MR-CI model.

The O₂ target was represented using the corresponding orbital configurations: 3 core orbitals $(2a_g, 1b_{1u})^6$ of frozen electrons and 9 valence orbitals up to $(3a_g, 2b_{3u}, 2b_{2u}, 3b_{1u}, 1b_{2g}, 1b_{3g})^{10}$.

For the scattering calculations: $(2a_g, 1b_{1u})^6 (5a_g, 2b_{3u}, 2b_{2u}, 4b_{1u}, 2b_{2g}, 2b_{3g})^{11}$ and $(2a_g, 1b_{1u})^6 (5a_g, 2b_{3u}, 2b_{2u}, 4b_{1u}, 2b_{2g}, 2b_{3g})^{10} (6a_g, 3b_{3u}, 3b_{2u}, 1b_{1g}, 5b_{1u}, 3b_{2g}, 3b_{3g}, 1a_u)^1$.

13

2.281

27

Table 1. Reduced mass (μ) , dissociation energy (D_e) and equilibrium distance (R_e) for O_2 and O_2^- potentials. Electron affinity (eA) of O_2 and the crossing point (R_e) between the O_2 and O_2^- potential energy curves are also given. Literature values, where available, are given in parentheses.

			O_2^-		
	$O_2(X^3\Sigma_g^-)$	$2 \Pi_{g}$	$^{2}\Pi_{u}$	$^{4}\Sigma_{u}^{-}$	$^{2}\Sigma_{u}^{-}$
μ (a.u.)	14582.6				
$D_{\rm e}~({\rm eV})$	5.10 (5.12 [20])	4.02	0.83	1.54	0.73
$R_{\rm e}$ (a.u.)	2.29 (2.28 [20])	2.55	3.38	3.47	3.73
R_c (a.u.)	_	2.34	3.20	3.03	3.25
eA (eV)	1.45 (1.46 [21])				

v	ϵ_{v}	ν	ϵ_{v}	v	ϵ_{v}
0	0.000	14	2.435	28	4.280
1	0.196	15	2.587	29	4.382
2	0.388	16	2.735	30	4.476
3	0.573	17	2.881	31	4.565
4	0.756	18	3.024	32	4.651
5	0.937	19	3.164	33	4.730
6	1.117	20	3.301	34	4.794
7	1.291	21	3.436	35	4.847
8	1.461	22	3.568	36	4.898
9	1.629	23	3.696	37	4.938
10	1.796	24	3.821	38	4.960
11	1.960	25	3.942	39	4.976
12	2,122	26	4.059	40	4.987

4.172

41

4.994

V. Laporta, R. Celiberto and J. Tennyson, *Phys. Rev.* A91, 012701 (2015). V. Laporta, R. Celiberto and J. Tennyson, *Plasma Sources Sci. Technol.* 22, 025001 (2013) Vibrational-Excitation process:

$$e^- + O_2(X^3\Sigma_g^-; v) \rightarrow O_2^-({}^2\Pi_g, {}^2\Pi_u, {}^4\Sigma_u^-, {}^2\Sigma_u^-) \rightarrow e^- + O_2(X^3\Sigma_g^-; v')$$

At energy below 2 eV the VE cross sections are dominated by ${}^{2}\Pi_{g}$ symmetry; comparison with Allan's results

Resonance at 10 eV dominated by ${}^{4}\Sigma_{u}^{-}$ symmetry

Set of calculated cross sections for j = 1

and the corresponding rate coefficients

Dissociative-electron-attachment

$$e^{-} + O_2(X^{3}\Sigma_{g}^{-}; \nu) \rightarrow O_2^{-}({}^{2}\Pi_{g}, {}^{2}\Pi_{u}, {}^{4}\Sigma_{u}^{-}, {}^{2}\Sigma_{u}^{-}) \rightarrow O({}^{3}P) + O^{-}({}^{2}P)$$

Set of calculated cross sections and the corresponding rate coefficients for some vibrational levels v and for j = 1

Set of vibrational-resolved cross sections and the corresponding rate coefficients for j = 1

Effect of target rotation

Number of vibrational levels as a function of the rotational quantum number *j*

<i>j</i> = 1	$v_1 = 041$
j = 50	$v_{50} = 033$
<i>j</i> = 100	$v_{100} = 023$
<i>j</i> = 150	$v_{150} = 09$
<i>j</i> = 170	$v_{170} = 02$

Thermal averaged energy of the ro-vibrational level $\epsilon_{v,j}$:

$$\overline{\epsilon_{v}}(T_{r}) = \sum_{j} \epsilon_{v,j} (2j+1) \frac{e^{-\epsilon_{v,j}/k_{B}T_{r}}}{Q_{v}(T_{r})}$$

 T_r is the rotational temperature

Thermal averaged vibrational-excitation cross section, T_r is the rotational temperature:

$$\bar{\sigma}_{\nu,\nu'}(\epsilon,T_r) = \sum_j \sigma_{\nu,\nu',j}(\epsilon)(2j+1)\frac{e^{-\epsilon_{\nu,j}/k_B T_r}}{Q_{\nu}(T_r)}$$

Thermal averaged rate coefficient by assuming the rotational temperature in equilibrium with electron temperature

Rotational *j*-resolved rate coefficients (solid lines) for dissociative-electron-attachment and for dissociative-excitation processes for v = 0 as a function of the electron temperature

and

Thermal averaged rate coefficient (dashed line) for v = 0 by assuming the rotational temperature in equilibrium with electron temperature

Cross sections for ${}^{1}\Delta$, ${}^{1}\Sigma$ excited states of oxygen*

*Thanks to David Schwenke (NASA Ames (US)) for supplying the potential energy curves

ϵ_v (eV)		
$O_2(X^3\Sigma, v)$	$O_2(a^1\Delta, v)$	$O_2(b^1\Sigma, v)$
0.0957	1.0588	1.7329
0.2861	1.2394	1.9026
0.4738	1.4168	2.0689
0.6586	1.5912	2.2318
0.8408	1.7624	2.3914
1.0202	1.9306	2.5475
1.1969	2.0955	2.7002
1.3709	2.2572	2.8493
1.5421	2.4156	2.9948
1.7106	2.5707	3.1365
1.8764	2.7224	3.2743
2.0394	2.8707	3.4082
2.1996	3.0153	3.5380
2.3570	3.1563	3.6635
2.5116	3.2935	3.7847
2.6633	3.4269	3.9013
2.8121	3.5562	4.0130
2.9580	3.6813	4.1198
3.1009	3.8020	4.2212
3.2407	3.9181	4.3170
3.3773	4.0294	4.4069
3.5107	4.1355	4.4906
3.6407	4.2363	4.5677
3.7672	4.3313	4.6378
3.8900	4.4203	4.7007
4.0088	4.5029	4.7561
4.1235	4.5787	4.8037
4.2336	4.6474	4.8435
4.3388	4.7088	4.8756
4.4386	4.7624	4.9006
4.5323	4.8084	4.9191
4.6190	4.8467	4.9324
4.6976	4.8776	4.9415
4.7667	4.9017	4.9475
4.8246	4.9198	4.9526
4.8692	4.9328	
4.8995	4.9416	
4.9181	4.9472	
4.9301	4.9527	
4.9389		
4.9449		
4.9499		
	$O_2(X^3\Sigma, v)$ 0.0957 0.2861 0.4738 0.6586 0.8408 1.0202 1.1969 1.3709 1.5421 1.7106 1.8764 2.0394 2.1996 2.3570 2.5116 2.6633 2.8121 2.9580 3.1009 3.2407 3.3773 3.5107 3.6407 3.7672 3.8900 4.0088 4.1235 4.2336 4.3388 4.4386 4.5323 4.6190 4.6976 4.7667 4.8246 4.8692 4.9181 4.9389 4.9499	ϵ_v (eV) $O_2(X^3\Sigma, v)$ $O_2(a^1\Delta, v)$ 0.09571.05880.28611.23940.47381.41680.65861.59120.84081.76241.02021.93061.19692.09551.37092.25721.54212.41561.71062.57071.87642.72242.03942.87072.19963.01532.35703.15632.51163.29352.66333.42692.81213.55622.95803.68133.10093.80203.24073.91813.37734.02943.51074.13553.64074.23633.76724.33133.89004.42034.00884.50294.12354.57874.23364.64744.33884.70884.43864.76244.53234.80844.61904.84674.69764.87764.76674.90174.82464.91984.86924.93284.89954.94164.91814.94724.93894.9499

- State-resolved cross sections can be obtained by splitting procedure from the global cross section;
- By setting $Y, Y' = \{X^{3}\Sigma_{g}^{-}, a^{1}\Delta_{g}, b^{1}\Sigma_{g}^{+}\}\$ the excited states of O_{2} and by v, v' the corresponding vibrational levels, in order to split the global cross section $\sigma_{Y'Y}^{exp}$ into vibrational-resolved cross section $\sigma_{Yv}^{Y'v'}$ the following formula can be used:

$$\sigma_{Yv}^{Y'v'}(\epsilon) = q_{Yv}^{Y'v'} \sigma_{Y'Y}^{exp} \left(\epsilon \frac{\Delta E_{Y0}^{Y'0}}{\Delta E_{Yv}^{Y'v'}} \right),$$

where ϵ is the electron energy,

$$q_{Yv}^{Y'v'} = \left| \left\langle \psi_{v'}^{Y'} \middle| \psi_{v}^{Y} \right\rangle \right|^2 \,,$$

the Frank-Condon factor and

$$\Delta E_{Yv}^{Y'v'} {=} \left| \epsilon_{v'}^{Y'} - \epsilon_{v}^{Y} \right|$$
 ,

is the threshold energy for the $Y, v \rightarrow Y', v'$ transition

Experimental global cross section for $e + O_2(X, {}^{1}\Delta, {}^{1}\Sigma)$ Alves *et al.* Eur. Phys. J. D (2016) 70: 124

Application: Electron-vibration relaxation in oxygen plasmas

$$e + O_2(X^3\Sigma_g^-; v, j) \rightleftharpoons e + O_2(X^3\Sigma_g^-; w, j), \quad (VE)$$

- State-to-State vibrational kinetics
- Vibrational relaxation time is comparable to chemical relaxation: vibrational non-equilibrium

V. Laporta, K.L. Heritier and M. Panesi, Chemical Physics 472 (2016) 44–49

• Time evolution of non-equilibrium vibrational distribution function:

Application: non-equilibrium model for inductively coupled plasmas discharges <u>*Preliminary results, work-in-progress*</u>

- Inductively Coupled Plasma (ICP) torches have wide range of possible applications which include deposition of metal coatings, synthesis of ultra-fine powders, generation of high purity silicon and testing of thermal protection materials for atmospheric entry vehicles;
- In the computational model, the electromagnetic induction equation is solved together with the set of Navier-Stokes equations; A state-to-state thermo-chemical non-equilibrium formulation is used for the chemical reactions;
- In its simplest configuration, an ICP torch consists of a quartz tube surrounded by an inductor coil made of a series of parallel current-carrying rings.

FIG. 1. Example of ICP torch in operating conditions (minitorch facility; credits von Karman Institute for Fluid Dynamics).

FIG. 2. Torch geometry and adopted reference frame.

$$\partial_{t}\rho_{i} + \nabla \cdot [\rho_{i}(\mathbf{u} + \mathcal{V}_{i})] = \mathcal{M}_{i}, \dot{\omega}_{i} \qquad [i \in \mathcal{S}], \qquad (2)$$

$$\partial_{t}(\rho\mathbf{u}) + \nabla \cdot (\rho\mathbf{u} \otimes \mathbf{u} + p\mathbb{I}) = \nabla \cdot \tau + \mathbf{J} \times \mathbf{B}, \qquad (3)$$

$$\partial_{t}\rho\mathcal{E} + \nabla \cdot (\rho H\mathbf{u}) + \sum_{i} \rho_{s}\mathcal{V}_{i}h_{i} = \tau : \nabla\mathbf{u} - \nabla \cdot \mathbf{q} + \mathbf{J} \cdot \mathbf{E}, \qquad (3)$$

$$\partial_{t}\rho e_{ev} + \nabla \cdot (\rho e_{ev}\mathbf{u}) + \sum_{i} \rho_{i}\mathcal{V}_{i}e_{ev,i}$$

$$= -\nabla \cdot \mathbf{q}_{ev} + \Omega^{ET} + \Omega^{C} + \Omega^{VT} + \mathbf{J} \cdot \mathbf{E},$$

pressure = 10⁵ Pa Power = 5 10⁴ W/m

reaction	type of calculation
electron-impact excitation	
$O_2(X^3\Sigma, v) + e \rightleftharpoons O_2(X^3\Sigma, w) + e$	ab initio RM [3, 4]
$O_2(a^1\Delta, v) + e \rightleftharpoons O_2(a^1\Delta, w) + e$	scaling X state
$O_2(b^1\Sigma, v) + e \rightleftharpoons O_2(b^1\Sigma, w) + e$	scaling X state
$O_2(X^3\Sigma, v) + e \rightleftharpoons O_2(a^1\Delta, w) + e$	FC exp scaling
$O_2(X^3\Sigma, v) + e \rightleftharpoons O_2(b^1\Sigma, w) + e$	FC exp scaling
$O_2(a^1\Delta, v) + e \rightleftharpoons O_2(b^1\Sigma, w) + e$	FC exp scaling
$O(i) + e \rightleftharpoons O(j) + e$	bruno [?]
heavy-particle excitation	
$O_2(X^3\Sigma, v) + O_2 \rightleftharpoons O_2(X^3\Sigma, w) + O_2$	FHO [5]
$O_2(X^3\Sigma, v) + O(^3P) \rightleftharpoons O_2(X^3\Sigma, w) + O(^3P)$	QCT [6]
electron-impact dissociation	
$O_2(X^3\Sigma, v) + e \rightleftharpoons O(^3P) + O(^3P) + e$	ab initio RM [3, 4]
$O_2(a^1\Delta, v) + e \rightleftharpoons O(^3P) + O(^3P) + e$	scaling X state
$O_2(b^1\Sigma, v) + e \rightleftharpoons O(^3P) + O(^3P) + e$	scaling X state
heavy particle dissociation	
$O_2(X^3\Sigma, v) + O_2 \rightleftharpoons O(^3P) + O(^3P) + O_2$	FHO [5]
$O_2(X^3\Sigma, v) + O(^3P) \rightleftharpoons O(^3P) + O(^3P) + O(^3P)$	QCT [7]
ionizzation	
$O(i) + e \rightleftharpoons O^+(^4S) + e + e$	Park [bruno?]
$O(^{3}P) + O(^{3}P) \rightleftharpoons O_{2}^{+}(X^{2}\Pi_{g}) + e$	bruno [?]

Results at equilibrium:

Outlook ...

- Complete sets, state-resolved, of vibrational-excitation, dissociative-electron-attachment and dissociative-excitation cross sections and rate coefficients for electron-oxygen scattering are supplied for plasma description purposes;
- Next step will be the updating to *ab-initio* calculations for state-resolved cross sections for excited states $^{1}\Delta$ and $^{1}\Sigma$ of oxygen;
- Calculations for electron-O₂⁺ scattering for dissociative recombination process;
- Developing of a self-consistent kinetic code for inductively-coupled-plasma;
- All cross sections are available to PHYS4Entry data base: http://users.ba.cnr.it/imip/cscpal38/phys4entry/database.html

Thank you for your attention

Acknowledgments:

- Prof. Roberto Celiberto (Politecnico di Bari, Italy)
- Prof. Jonathan Tennyson (University College London, UK)
- Prof. Marco Panesi (University of Illinois, IL, US)
- Dr. Alessandro Munafo (University of Illinois, IL, US)