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Plan of the talk:

- Short introduction to the theoretical formalism for electron-molecule 
resonant scattering;

- State-resolved cross sections database for electron-oxygen scattering
- Ab-initio electron-O2(X,v) cross sections;

- Cross sections for 1Δ, 1Σ excited states of oxygen;

- Applications
- Electron-vibration relaxation in oxygen plasmas;
- Non-equilibrium model for inductively coupled plasmas discharges;



Some theoretical details

Let’s consider electron-molecule scattering with the presence of two (or more) interacting
resonances:

𝑒− + 𝐴𝐵 𝑣 → 𝐴𝐵1
−, 𝐴𝐵2

− → 𝑒− + 𝐴𝐵∗ 𝑤 (𝑉𝐸)
→ 𝐴− + 𝐵 (𝐷𝐴)
→ 𝑒− + 𝐴 + 𝐵 (𝐷𝐸)

𝑒− + 𝐴𝐵+ 𝑣 → 𝐴𝐵1 , 𝐴𝐵2 → 𝐴 + 𝐵 (𝐷𝑅)

The process can be described by two (or more) discrete electronic states, ۧ|𝑑1 and ۧ|𝑑2 ,

embedded-in and interacting-with a single electronic continuum ൿ|𝑘

ۧ|Ψ ~ ۧ|𝑑1 + ۧ|𝑑2 + ൿ|𝑘

Resonant bound state
Interaction between electron 

and neutral molecule



The theory is developed in the projector-operators formalism within Hilbert space:

𝑃 = න𝑑 𝑘 ൿ|𝑘 ർ𝑘 , 𝑄 = ۧ|𝑑1 ൻ𝑑1 + ۧ|𝑑2 ൻ𝑑2|

𝑃 + 𝑄 = 1 , 𝑃2 = 𝑃 , 𝑄2 = 𝑄 , 𝑃𝑄 = 𝑄𝑃 = 0

The electron-molecule effective Hamiltonian 𝐻 = 𝐻0 + 𝑈 + 𝑉 can be written as:

𝐻0 = ۧ𝑑1 𝑇𝑁 +𝑉0 +𝜖1 ൻ𝑑1 + ۧ𝑑2 𝑇𝑁 +𝑉0 +𝜖2 ൻ𝑑2 + 𝑑 𝑘 ൿ|𝑘 𝑇𝑁 +𝑉0 +𝜖𝑘 ർ𝑘 |

𝑈 = ۧ𝑑1 𝑈12ൻ𝑑2 + h. c.

𝑉 = 𝑑 𝑘 ۧ|𝑑1 𝑉1𝑘 ർ𝑘 + ۧ|𝑑2 𝑉2𝑘 ർ𝑘 + h. c.

- 𝑉0 is the neutral molecule potential with eigenvalues equation:
𝑇𝑁 +𝑉0 | ۧ𝑣 = 𝜖𝑣| ۧ𝑣

- 𝜖1,2 are the resonance positions respect to 𝑉0
- U describes the coupling between the discrete states
- V couples the discrete states with the continuum states



Schrödinger equation for electron-molecule scattering. Ψ is the complete wave function of the
system with total energy 𝐸 = 𝜖𝑘 + 𝜖𝑣:

𝐻 − 𝐸 | ۧΨ = 0

Splitting ۧΨ = P ۧΨ + Q| ۧΨ into P e Q Hilbert subspace and projecting the Schrödinger
equation, it obtains Lippmann-Swinger like equations for open-channel and closed-channel:

𝑃 𝐻0 + 𝑈 − 𝐸 𝑃 ۧΨ = −𝑃𝑉𝑄 ۧΨ
𝑄 𝐻0 + 𝑈 − 𝐸 𝑄| ۧΨ = −𝑄𝑉𝑃| ۧΨ

Treating V as a perturbation the open-channel solution can be written as:

𝑃 ۧΨ = 𝑃 ൿ𝜖𝑘 | ۧ𝑣 +
1

𝑃 𝐸 − 𝐻0 − 𝑈 𝑃
𝑃𝑉𝑄| ۧΨ

The homogeneous solution represents asymptotically a

free electron ൿ|𝜖𝑘 and a target molecule in vibrational level ۧ|𝑣



By putting the open-channel solution into closed-channel equation, after some
manipulations, one has the final vector equation for the two resonant wave functions
Ԧ𝜉 𝑅 = (𝜉1, 𝜉2 ):

ℋ − 𝐸 Ԧ𝜉 𝑅 + න𝑑𝑅′ 𝐾 𝑅, 𝑅′, 𝐸 Ԧ𝜉 𝑅′ = −𝑉𝑘 𝜒𝑣(𝑅)

where 𝑉𝑘 = 𝑉1𝑘 , 𝑉2𝑘 are the coupling potentials and

ℋ =
𝑇𝑁 + 𝑉1 𝑈12
𝑈21 𝑇𝑁 + 𝑉2

𝐾 𝑅, 𝑅′, 𝐸 =

𝑣

𝜒𝑣
∗ (𝑅)𝜒𝑣(𝑅′) Δ 𝑅, 𝑅′, 𝐸 − 𝜖𝑣 −

𝑖

2
Γ 𝑅, 𝑅′, 𝐸 − 𝜖𝑣

Γ𝑖𝑗 𝑅, 𝑅
′, 𝐸 − 𝜖𝑣 = 2𝜋න𝑑𝜖′ 𝑉𝑖𝑘 𝛿 𝐸 − 𝜖′ 𝑉∗

𝑗𝑘 𝑖, 𝑗 = 1,2

Δ𝑖𝑗 𝑅, 𝑅
′, 𝐸 − 𝜖𝑣 =

1

2𝜋
𝑃න𝑑𝜖′

Γ𝑖𝑗(𝑅, 𝑅
′, 𝜖′)

𝐸 − 𝜖𝑣 − 𝜖′
𝑖, 𝑗 = 1,2



The nuclear dynamics, in the full theory, is governed by complex, non-local and energy-
dependent operators.

The local approximation (the so-called ‘boomerang model’) of the full theory consists to
make the following two ansatz in the kernel 𝐾:

(spacing of the vibrational levels)
If 𝑣𝑛 − 𝑣𝑚 ≪ 𝜖𝑘 ∀ 𝑛,𝑚 ⟹ 𝐸 − 𝑣𝑛 = 𝜖𝑘 + 𝑣𝑖 − 𝑣𝑛 ≈ 𝜖𝑘

(resonance positions)
𝜖𝑘 ≃ 𝜖1 𝑅 = 𝑉1(𝑅) − 𝑉0(𝑅)

𝜖𝑘 ≃ 𝜖2 𝑅 = 𝑉2(𝑅) − 𝑉0(𝑅)

With these replacements the kernel 𝐾 become local (=dependent on just one geometry) and
energy-independent.

𝑇𝑁 + 𝑉1 𝑈12
𝑈21 𝑇𝑁 + 𝑉2

−
𝑖

2
Γ 𝑅 − 𝐸𝟏 Ԧ𝜉 𝑅 = −𝑉𝑘 𝜒𝑣(𝑅)



The final resonant vibrational-excitation cross section for transition 𝑣𝑖 → 𝑣𝑓 and for electron

energy 𝜖 is given by:

𝜎𝑖,𝑓 𝜖 =
2𝑠𝑟 + 1

2(2𝑠 + 1)

𝑔𝑟
𝑔

64𝜋5𝑚2

ℏ4
𝑘𝑓

𝑘𝑖
𝑇11 + 𝑇22 + 𝑇12 + 𝑇21

2

where the T matrix elements are given by

𝑇𝑝𝑞 = 𝜒𝑓 𝑉𝑝𝑘𝑓 𝜉𝑞 𝑝, 𝑞 = 1,2

For a two non-interacting resonances the cross section reduces to:

𝜎𝑖,𝑓 𝜖 =
2𝑠𝑟 + 1

2(2𝑠 + 1)

𝑔𝑟
𝑔

64𝜋5𝑚2

ℏ4
𝑘𝑓

𝑘𝑖
( 𝑇11

2 + 𝑇22
2)

The corresponding rate coefficient, assuming for electrons a Maxwell distribution at temperature
kT, is given by:

𝐾𝑖,𝑓 𝑇 =
2

𝜋
(𝑘𝑇)−1.5න𝑑𝜖 𝜖 𝜎𝑖,𝑓 𝜖 𝑒−𝜖/𝑘𝑇



Resonant
Vibrational-excitation

cross section

e  + AB(v)  AB  AB(v’) + e 



State-resolved
cross sections database 

for
electron-oxygen

scattering



electron-O2(X, v) resonant scattering

In order to describe the low-energy electron-O2(X
3Σ𝑔

−) resonant scattering it needs to include

four resonant states, 2Π𝑔,
2Π𝑢,

4Σ𝑢
−, 2Σ𝑢

− of O2
−.

Potential energy curves and resonance widths obtained from MOLPRO and R-matrix within
aug-cc-pvQZ basis-set and MR-CI model.

The O2 target was represented using the corresponding orbital configurations: 3 core orbitals
(2ag, 1b1u)

6 of frozen electrons and 9 valence orbitals up to (3ag, 2b3u, 2b2u, 3b1u, 1b2g, 1b3g)
10.

For the scattering calculations:
(2ag, 1b1u)

6 (5ag, 2b3u, 2b2u, 4b1u, 2b2g, 2b3g)
11 and

(2ag, 1b1u)
6 (5ag, 2b3u, 2b2u, 4b1u, 2b2g, 2b3g)

10 (6ag, 3b3u, 3b2u, 1b1g, 5b1u, 3b2g, 3b3g, 1au)
1.



V. Laporta, R. Celiberto and J. Tennyson, Phys. Rev. A91, 012701 (2015).

V. Laporta, R. Celiberto and J. Tennyson, Plasma Sources Sci. Technol. 22, 025001 (2013)



At energy below 2 eV the VE cross sections are dominated by 2Π𝑔 symmetry; comparison with Allan’s results

Resonance at 10 eV dominated by 4Σ𝑢
− symmetry

𝑒− + O2 X 3Σ𝑔
−; 𝑣 ⟶ O2

− 2Π𝑔,
2Π𝑢,

4Σ𝑢
−, 2Σ𝑢

− ⟶ 𝑒− + O2 X 3Σ𝑔
− ; 𝑣′

Vibrational-Excitation process:



Set of calculated cross sections for j = 1

and the corresponding rate coefficients



𝑒− + O2 X 3Σ𝑔
−; 𝑣 ⟶ O2

− 2Π𝑔,
2Π𝑢,

4Σ𝑢
−, 2Σ𝑢

− ⟶ O 3P + O−(2P)

Dissociative-electron-attachment

DeA cross section for v = 0 and j = 1
Contributions from the four symmetries and comparison with some 

theoretical and experimental data present in literature 

Electron energy (eV)



Set of calculated cross sections and the corresponding rate coefficients for some vibrational
levels v and for j = 1

J = 1

J = 1



𝑒− + O2 X3Σ𝑔
−; 𝑣 ⟶ O2

− 2Π𝑔,
2Π𝑢,

4Σ𝑢
−, 2Σ𝑢

− ⟶ 𝑒− + 2 O 3P

Electron-impact dissociation:

J = 1
J = 1

v = 0
J = 1

Set of vibrational-resolved cross sections and the corresponding rate coefficients for j = 1



Effect of target rotation

j = 1 v1 = 0…41

j = 50 v50 = 0…33

j = 100 v100 = 0…23

j = 150 v150 = 0…9

j = 170 v170 = 0…2

Number of vibrational levels as a function of the
rotational quantum number j

Thermal averaged energy of the ro-vibrational 

level 𝜖𝑣,𝑗:

ഥ𝜖𝑣 𝑇𝑟 =

𝑗

𝜖𝑣,𝑗(2𝑗 + 1)
𝑒−𝜖𝑣,𝑗/𝑘𝐵𝑇𝑟

𝑄𝑣(𝑇𝑟)

𝑇𝑟 is the rotational temperature



Thermal averaged vibrational-excitation cross section, 𝑇𝑟 is the rotational temperature:

ത𝜎𝑣,𝑣′ 𝜖, 𝑇𝑟 =

𝑗

𝜎𝑣,𝑣′,𝑗(𝜖)(2𝑗 + 1)
𝑒−𝜖𝑣,𝑗/𝑘𝐵𝑇𝑟

𝑄𝑣(𝑇𝑟)

j = 1

j = 50

j = 100

Tr = 102 K

Tr = 104 K

0 → 1

Thermal averaged rate coefficient by assuming the
rotational temperature in equilibrium with electron
temperature

j = 1, 50, 100

j = 150
0 → 1

Thermal averaged
rate coefficient

j-resolved cross section for v = 0 → v’= 1



j = 1

j = 50

j = 100

j = 150

Thermal averaged
rate coefficient

v = 0 v = 0 
j = 1

j = 50
j = 100

j = 150

Thermal averaged
rate coefficient

Rotational j-resolved rate coefficients (solid lines) for dissociative-electron-attachment and for
dissociative-excitation processes for v = 0 as a function of the electron temperature

and
Thermal averaged rate coefficient (dashed line) for v = 0 by assuming the rotational temperature
in equilibrium with electron temperature



Cross sections for 1Δ, 1𝚺 excited states of oxygen*

O(3P) + O(3P)

X 3Σ𝑔
−

a 1Δ𝑔

b 1Σ𝑔
+

*Thanks to David Schwenke (NASA Ames (US)) for supplying
the potential energy curves



X 3Σ𝑔
− → a 1Δ𝑔

X 3Σ𝑔
− → b 1Σ𝑔

+

a 1Δ𝑔 → b 1Σ𝑔
+

- State-resolved cross sections can be obtained by splitting procedure from the global cross section;

- By setting 𝑌, 𝑌′ = {X 3Σ𝑔
−, a 1Δ𝑔 , b

1Σ𝑔
+} the excited states of O2 and by v, v’ the corresponding

vibrational levels, in order to split the global cross section 𝜎
𝑌′𝑌
𝑒𝑥𝑝

into vibrational-resolved cross

section 𝜎𝑌𝑣
𝑌′𝑣′ the following formula can be used:

𝜎𝑌𝑣
𝑌′𝑣′ 𝜖 = 𝑞𝑌𝑣

𝑌′𝑣′𝜎
𝑌′𝑌
𝑒𝑥𝑝

𝜖
∆𝐸𝑌0

𝑌′0

∆𝐸𝑌𝑣
𝑌′𝑣′

,

where 𝜖 is the electron energy,

𝑞𝑌𝑣
𝑌′𝑣′ = 𝜓𝑣′

𝑌′ 𝜓𝑣
𝑌

2

,

the Frank-Condon factor and

∆𝐸𝑌𝑣
𝑌′𝑣′= 𝜖𝑣′

𝑌′ − 𝜖𝑣
𝑌 ,

is the threshold energy for the 𝑌, 𝑣 → 𝑌′, 𝑣′ transition

Experimental global cross section for

e + O2(X, 1D, 1S)

Alves et al. Eur. Phys. J. D (2016) 70: 124



𝑋(0) → 1Δ(1)

𝑋(5) → 1Δ(6)

𝑋(10) → 1Δ(11)
Global

𝑋 → 1Δ cross sections

Global

𝑋(0) → 1Σ(1)

𝑋(0) → 1Σ(2)

𝑋(10) → 1Σ(10)

𝑋 → 1Σ cross sections

Global

1Δ(0) → 1Σ(1)

1Δ(10) → 1Σ(10)

1Δ(20) → 1Σ(20)

1Δ → 1Σ cross sections



Application: Electron-vibration relaxation in oxygen plasmas

V. Laporta, K.L. Heritier and M. Panesi, Chemical Physics 472 (2016) 44–49

• State-to-State vibrational kinetics
• Vibrational relaxation time is comparable to chemical relaxation: vibrational non-equilibrium



• Time evolution of non-equilibrium vibrational distribution function:

• Vibrational relaxation time: 

Equilibrium
distribution

Non-equilibrium
distribution



Application: non-equilibrium model for inductively coupled plasmas discharges

*Preliminary results, work-in-progress*

- Inductively Coupled Plasma (ICP) torches have wide range of possible applications which include

deposition of metal coatings, synthesis of ultra-fine powders, generation of high purity silicon and testing

of thermal protection materials for atmospheric entry vehicles;

- In the computational model, the electromagnetic induction equation is solved together with the set of

Navier-Stokes equations; A state-to-state thermo-chemical non-equilibrium formulation is used for the

chemical reactions;

- In its simplest configuration, an ICP torch consists of a quartz tube surrounded by an inductor coil made

of a series of parallel current-carrying rings.



pressure = 105 Pa
Power = 5 104 W/m



Results at equilibrium:



e−

O

O2(X)
O2(1D)

O2(1S)

O2
+

O+

O2(X)

O2(1D)

O2(1S)



Outlook…

• Complete sets, state-resolved, of vibrational-excitation, dissociative-electron-attachment and
dissociative-excitation cross sections and rate coefficients for electron-oxygen scattering are
supplied for plasma description purposes;

• Next step will be the updating to ab-initio calculations for state-resolved cross sections for
excited states 1D and 1S of oxygen;

• Calculations for electron-O2
+ scattering for dissociative recombination process;

• Developing of a self-consistent kinetic code for inductively-coupled-plasma;

• All cross sections are available to PHYS4Entry data base:
http://users.ba.cnr.it/imip/cscpal38/phys4entry/database.html
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