High power impulse magnetron sputtering discharge (HiPIMS)
The High Power Impulse Magnetron Sputtering Discharge (HiPIMS) is a promising new Ionized Physical Vapor Depositon
Technique.
Magnetron sputtering can be operated at high power levels to achieve high plasma densities.
For conventional dc sputtering discharge, the maximum power is limited by the thermal load on the
target provided by bombardment of the positive ions. To avoid this limitation, the power may
be applied in pulses. By decreasing the duty cycle (on-time divided by the cycle-time), a
corresponding increase in power during the on-time can be achieved. In the high
power impulse magnetron sputtering (HiPIMS), the power is brought to extremely high
instantaneous levels of > 1000 W/cm2. HiPIMS is known to produce high plasma densities
and to give highly ionized metal plasmas.
The work has involved plasma characterization, thin film deposition and characterization and modeling of the
discharge physics.
This project has been a colaboration with profs. Ulf Helmersson and Daniel Lundin at Linköping University, Sweden and prof. Nils Brenning and Dr. Michael A. Raadu at KTH Royal Institute of Technology, Stockholm for a few decades.
Publications:
1. J. T. Gudmundsson, J. Alami and U. Helmersson, Evolution of the electron energy distribution and plasma parameters in a pulsed magnetron discharge, Applied Physics Letters 78(22) (2001) 3427 - 3429 article
2. J. T. Gudmundsson, J. Alami and U. Helmersson, Spatial and temporal behavior of the plasma parameters in a pulsed magnetron discharge, Surface and Coatings Technology 161 (2002) 249 - 256 article
3. K. B. Gylfason, Observation of solitons in a pulsed magnetron sputtering discharge, MS thesis, University of Iceland, June 2003, thesis
4. Alami, P. O. Å. Petersson, D. Music, J. T. Gudmundsson, J. Böhlmark and U. Helmersson, Ion-assisted physical vapor deposition for enhanced film properties on nonflat surfaces, Journal of Vacuum Science & Technology A, 23(2) (2005) 278-280 article
5.J. Bohlmark, J. T. Gudmundsson, J. Alami, M. Latteman, U. Helmersson, Spatial Electron Density Distribution in a High-Power Pulsed Magnetron Discharge, IEEE Transactions on Plasma Science, 33 (2005) 346-347 article
6. K. B. Gylfason, J. Alami, U. Helmersson and J. T. Gudmundsson, Ion-acoustic solitary waves in a high power pulsed magnetron sputtering discharge, Journal of Physics D: Applied Physics, 38 (2005) 3417-3421 article
7. J. Alami, J. T. Gudmundsson, J. Bohlmark, J. Birch, and U. Helmersson, Plasma dynamics in a highly ionized pulsed magnetron discharge, Plasma Sources Science and Technology, 14 (2005) 525-531 article
8. U. Helmersson, M. Latteman, J. Bohlmark, A. P. Ehiasarian, and J. T. Gudmundsson, Ionized physical vapor deposition (IPVD): A review of technology and applications, Thin Solid Films, 513 (2006) 1 - 24 article
9. J. Bohlmark, J. T. Gudmundsson, M. Latteman, A. P. Ehiasarian, Y. Aranda-Gonzalvo, N. Brenning and U. Helmersson, The ion energy distributions and ion flux composition from a high power impulse magnetron sputtering discharge, Thin Solid Films, 515 (2006) 1522-1526 article
10. J. T. Gudmundsson, Ionization mechanism in the high power impulse magnetron sputtering (HiPIMS) discharge, Journal of Physics: Conference Series, 100 (2008) 082013 article
11. J. T. Gudmundsson, Ionized physical vapor deposition (IPVD): magnetron sputtering discharges, Journal of Physics: Conference Series, 100 (2008) 082002 article
12. P. Sigurjonsson and J. T. Gudmundsson, Plasma parameters in a planar dc magnetron sputtering discharge of argon and krypton, Journal of Physics: Conference Series, 100 (2008) 062018 article
13. J. T. Gudmundsson, P. Sigurjonsson, P. Larsson, D. Lundin, and U. Helmersson, On the electron energy in the high power impulse magnetron sputtering discharge, Journal of Applied Physics, 105 (2009) 123302 article
14. J. T. Gudmundsson, The high power impulse magnetron sputtering discharge as an ionized physical vapor deposition tool, Vacuum, 84(12) (2010) 1360-1364, article
15. M. Samuelsson, D. Lundin, J. Jensen, M. A. Raadu, J. T. Gudmundsson and U. Helmersson, On the film density using high power impulse magnetron sputtering, Surface
and Coatings Technology, 205(2) (2010), 591-596 article
16. M. A. Raadu, I. Axnäs, J. T. Gudmundsson, C. Huo and N Brenning, An ionization region model for high power impulse magnetron sputtering discharges,
Plasma Sources Science and Technology 20(6) (2011) 065007
article
17. F. Magnus, O. B. Sveinsson, S. Olafsson and J. T. Gudmundsson, Current-voltage-time characteristics of the reactive Ar/N2 high power impulse magnetron sputtering discharge,
Journal of Applied Physics, 110(8), (2011) 083306
article
18. F. Magnus, A. S. Ingason, S. Olafsson and J. T. Gudmundsson, Nucleation and resistivity of ultrathin TiN films grown by high power impulse magnetron sputtering,
IEEE Electron Device Letters 33(7) (2012) 1045
article
19. J. T. Gudmundsson, N. Brenning, D. Lundin and U. Helmersson, High power impulse magnetron sputtering discharge,
Journal of Vacuum Science & Technology A 30(3) (2012) 030801
article
20. C. Huo, M. A. Raadu, D. Lundin, J. T. Gudmundsson, A. Anders and Nils Brenning, Gas rarefaction and the time evolution of long high-power impulse magnetron sputtering pulses,
Plasma Sources Science and Technology 21(4) (2012) 045004
article
21. F. Magnus, T. K. Tryggvason, S. Olafsson and J. T. Gudmundsson, Current-voltage-time characteristics of the reactive Ar/O$_2$ high power impulse magnetron sputtering discharge,
Journal of Vacuum Science & Technology A 30(5) (2012) 050601
article
22. C. Huo, D. Lundin, M. A. Raadu, A. Anders, J. T. Gudmundsson and N. Brenning, On sheath energization and Ohmic heating in sputtering magnetrons
Plasma Sources Science and Technology 22(4) (2013) 045005
article
23. J. T. Gudmundsson, F. Magnus, T. K. Tryggvason, S. Shayestehaminzadeh, O. B. Sveinsson, and S. Olafsson, Reactive high power impulse magnetron sputtering, Proceedings of the XII International
Symposium on Sputtering and Plasma Processes (ISSP 2013), Kyoto, Japan, July 10 - 12, 2013, p. 192-194
article
24. J. T. Gudmundsson, On reactive high power impulse magnetron sputtering, Plasma Physics and Controlled Fusion, 58(1) (2016) 014002
article
25. J. T. Gudmundsson, D. Lundin, G. D. Stancu, N. Brenning, and T. M. Minea, Are the argon metastables important in high power impulse magnetron sputtering discharges ?, Physics of Plasmas, 22(11) (2015) 113508
article
26. J. T. Gudmundsson, D. Lundin, N. Brenning, M. A. Raadu, Chunqing Huo, and T. M. Minea, An ionization region model of the reactive Ar/O$_2$ high power impulse magnetron sputtering discharge, Plasma Sources Science and Technology, 25(6) (2016) 065004 article
27. N. Brenning, J. T. Gudmundsson, D. Lundin, T. Minea, M. A. Raadu and U. Helmersson, The Role of Ohmic Heating in dc Magnetron Sputtering, Plasma Sources Science and Technology, 25(6) (2016) 065024 article
28. D. Lundin and J. T. Gudmundsson, N. Brenning, M. A. Raadu, T. M. Minea, A study of the oxygen dynamics in a reactive Ar/O$_2$ high power impulse magnetron sputtering discharge using an ionization region model, Journal of Applied Physics, 121(17) (2017) 171917 article
29. A. Hecimovic and J. T. Gudmundsson, Preface to Special Topic: Reactive high power impulse magnetron sputtering, Journal of Applied Physics, 121(17) (2017) 171801 article
30. Chunqing Huo, D. Lundin, J. T. Gudmundsson, M. A. Raadu, J. W. Bradley and N. Brenning, Particle-balance models for pulsed sputtering magnetrons, Journal of Physics D: Applied Physics, 50(35) (2017) 354003 article
31. N. Brenning, J. T. Gudmundsson, M. A. Raadu, T J. Petty, T Minea and D. Lundin, A unified treatment of self-sputtering, process gas recycling, and runaway for high power impulse sputtering magnetrons, Plasma Sources Science and Technology, 26(12) (2017) 125003 article
32. H. Hajihoseini and J. T. Gudmundsson, Vanadium and vanadium nitride thin films grown by high power impulse magnetron sputtering, Journal of Physics D: Applied Physics, 50(50) (2017) 505302 article
33. D. Ö. Thorsteinsson and J. T. Gudmundsson, Growth of HfN thin films by reactive high power impulse magnetron sputtering, AIP Advances, 8(3) (2018) 035124 article
34. M. Kateb, H. Hajihoseini, J. T. Gudmundsson and S. Ingvarsson, Comparison of magnetic and structural properties of permalloy Ni$_{80}$Fe$_{20}$ grown by dc and high power impulse magnetron sputtering, Journal of Physics D: Applied Physics, 51(28) (2018) 285005 article
35. H. Hajihoseini, M. Kateb, S. Ingvarsson, and J. T. Gudmundsson, Effect of substrate bias on properties of HiPIMS deposited vanadium nitride films, Thin Solid Films, 663 (2018) 126 - 130 article
36. A. Butler, N. Brenning, M. A. Raadu, J. T. Gudmundsson, T. Minea and D. Lundin, On three different ways to quantify the degree of ionization in sputtering magnetrons, Plasma Sources Science and Technology, 27(10) (2018) 105005 article
37. M. Kateb, J. T. Gudmundsson and S. Ingvarsson, Effect of atomic ordering on the magnetic anisotropy of single crystal NiFe, AIP Advances, 9(3) (2019) 035308 article
38. M. Kateb, H. Hajihoseini, J. T. Gudmundsson and S. Ingvarsson, The role of ionization fraction on the surface roughness, density and interface mixing of the films deposited by thermal evaporation, dc magnetron sputtering and HiPIMS: An atomistic simulation, Journal of Vacuum Science and Technology A, 37(3) (2019) 031306 article
39. H. Hajihoseini, M. Čada, Z. Hubička, S. Ünaldi, M. A. Raadu, N. Brenning, J. T. Gudmundsson and D. Lundin, The Effect of Magnetic Field Strength and Geometry on the Deposition Rate and Ionized Flux Fraction in the HiPIMS Discharge, Plasma, 2(2) (2019) 201 - 221 article
40. H. Hajihoseini, M. Kateb, S. Ingvarsson and J. T. Gudmundsson, Oblique angle deposition of nickel thin films by high power impulse magnetron sputtering, Beilstein Journal of Nanotechnology, 10 (2019) 1914 - 1921 article
41. M. Šlapanská, A. Hecimovic, J. T. Gudmundsson, J. Hnilica, W. Breilmann, P. Vašina and A. von Keudell, Study of the transition from self-organised to homogeneous plasma distribution in chromium HiPIMS discharge, Journal of Physics D: Applied Physics, 53(15) (2020) 155201 article
42. M. T. Sultan, J. T. Gudmundsson, A. Manolescu, V. S. Teodorescu, M. L. Ciurea and H. G. Svavarsson, Obtaining SiGe nanocrystallites between crystalline TiO layers by HiPIMS without annealing, Applied Surface Science, 511 (2020) 145552 article
43. N. Brenning, A. Butler, H. Hajihoseini, M. Rudolph, M. A. Raadu, J. T. Gudmundsson, T. Minea and D. Lundin, Optimization of HiPIMS discharges: the selection of pulse power, pulse length, gas pressure, and magnetic field strength, Journal of Vacuum Science and Technology A, 38(3) 033008 article
44. H. Hajihoseini, M. Čada, Z. Hubička, S. Ünaldi, M. A. Raadu, N. Brenning, J. T. Gudmundsson and D. Lundin, Sideways deposition rate and ionized flux fraction in dc and high power impulse magnetron sputtering, Journal of Vacuum Science and Technology A, 38(3) 033009 article
45. M. Rudolph, N. Brenning, M. A. Raadu, H. Hajihoseini, J. T. Gudmundsson, A. Anders, and D. Lundin, Optimizing the deposition rate and ionized flux fraction by tuning the pulse length in high power impulse magnetron sputtering, Plasma Sources Science and Technology, 29(5) (2020) 05LT01 article
46. M. Kateb, J. T. Gudmundsson and S. Ingvarsson, Effect of substrate bias on microstructure of epitaxial film grown by HiPIMS: An atomistic simulation, Journal of Vacuum Science and Technology A, 38(4) (2020) 043006 article
47. J. T. Gudmundsson, Physics and technology of magnetron sputtering discharges, Plasma Sources Science and Technology, 29(11) (2020) 113001 article
48. N. Brenning, H. Hajihoseini, M. Rudolph, M. A. Raadu, J. T. Gudmundsson, T. M. Minea and D. Lundin, HiPIMS optimization by using mixed high-power and low-power pulsing, Plasma Sources Science and Technology, 30(1) (2021) 015015 article
49. M. Rudolph, H. Hajihoseini, M. A. Raadu, J. T. Gudmundsson, N. Brenning, T. M. Minea, A. Anders and D. Lundin, On how to measure the probabilities of target atom ionization and target ion back-attraction in high-power impulse magnetron sputtering, Journal of Applied Physics, 129(3) (2021) 033303 article
50. M. Rudolph, A. Revel, D. Lundin, H. Hajihoseini, N. Brenning, M. A. Raadu, A. Anders, T. M. Minea and J. T. Gudmundsson, On the electron energy distribution function in the high power impulse magnetron sputtering discharge, Plasma Sources Science and Technology, 30(4) (2021) 045011 article
51. M. Kateb, J. T. Gudmundsson, P. Brault, A. Manolescu and S. Ingvarsson, On the role of ion potential energy in low energy HiPIMS deposition: An atomistic simulation, Surface and Coatings Technology, accepted for publication September 2021
52. M. Rudolph, N. Brenning, H. Hajihoseini, M. A. Raadu, T. M. Minea, A. Anders, J. T. Gudmundsson and D. Lundin, Influence of the magnetic field on the discharge physics of a high power impulse magnetron sputtering discharge, Journal of Physics D: Applied Physics, accepted for publication September 2021
Presentations:
Þessi síða hefur verið heimsótt sinnum síðan 7. ágúst 2006.